Metal-ligand interactions have emerged as an important tool to trigger and modulate self-assembly, and to tune the properties of the final supramolecular materials. Herein, we report the metal-cation induced self-assembly of a pyrene–peptide conjugate to form hydrogels. The peptide has been rationally designed to favor the formation of β-sheet 1D assemblies and metal coordination through the Glu side chains. We studied in detail the self-assembly process in the presence of H+, Li+, Na+, K+, Ca2+, Ni2+, Cu2+, Zn2+, Cd2+, Co2+, Fe3+, and Cr3+ and found that the morphology and mechanical properties of the hydrogels are ion-dependent. Moreover, thanks to the presence of the metal, new applications could be explored. Cu2+ metallogels could be used for amine sensing and meat freshness monitoring, while Zn2+ metallogels showed good selectivity for cationic dye adsorption and separation.

Metal cation triggered peptide hydrogels and their application in food freshness monitoring and dye adsorption

Fortunato A.;Mba M.
Conceptualization
2021

Abstract

Metal-ligand interactions have emerged as an important tool to trigger and modulate self-assembly, and to tune the properties of the final supramolecular materials. Herein, we report the metal-cation induced self-assembly of a pyrene–peptide conjugate to form hydrogels. The peptide has been rationally designed to favor the formation of β-sheet 1D assemblies and metal coordination through the Glu side chains. We studied in detail the self-assembly process in the presence of H+, Li+, Na+, K+, Ca2+, Ni2+, Cu2+, Zn2+, Cd2+, Co2+, Fe3+, and Cr3+ and found that the morphology and mechanical properties of the hydrogels are ion-dependent. Moreover, thanks to the presence of the metal, new applications could be explored. Cu2+ metallogels could be used for amine sensing and meat freshness monitoring, while Zn2+ metallogels showed good selectivity for cationic dye adsorption and separation.
2021
File in questo prodotto:
File Dimensione Formato  
gels-Mba 2021.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 2.58 MB
Formato Adobe PDF
2.58 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3415699
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact