This paper reports on the detailed characterization of the K2-111 planetary system with K2, WASP, and ASAS-SN photometry, as well as high-resolution spectroscopic data from HARPS-N and ESPRESSO. The host, K2-111, is confirmed to be a mildly evolved (log g = 4.17), iron-poor ([Fe/H] = -0.46), but alpha-enhanced ([α/Fe]=0.27), chromospherically quiet, very old thick disc G2 star. A global fit, performed by using PyORBIT, shows that the transiting planet, K2-111 b, orbits with a period Pb = 5.3518 ± 0.0004 d and has a planet radius of 1.82+0.11-0.09 R⊙ and a mass of 5.29+0.76-0.77 M⊙, resulting in a bulk density slightly lower than that of the Earth. The stellar chemical composition and the planet properties are consistent with K2-111 b being a terrestrial planet with an iron core mass fraction lower than the Earth. We announce the existence of a second signal in the radial velocity data that we attribute to a non-transiting planet, K2-111 c, with an orbital period of 15.6785 ± 0.0064 d, orbiting in near-3:1 mean motion resonance with the transiting planet, and a minimum planet mass of 11.3 ± 1.1 M⊙. Both planet signals are independently detected in the HARPS-N and ESPRESSO data when fitted separately. There are potentially more planets in this resonant system, but more well-sampled data are required to confirm their presence and physical parameters.

K2-111: An old system with two planets in near-resonance

Malavolta L.;Benatti S.;Cristiani S.;Latham D. W.;Piotto G.;
2020

Abstract

This paper reports on the detailed characterization of the K2-111 planetary system with K2, WASP, and ASAS-SN photometry, as well as high-resolution spectroscopic data from HARPS-N and ESPRESSO. The host, K2-111, is confirmed to be a mildly evolved (log g = 4.17), iron-poor ([Fe/H] = -0.46), but alpha-enhanced ([α/Fe]=0.27), chromospherically quiet, very old thick disc G2 star. A global fit, performed by using PyORBIT, shows that the transiting planet, K2-111 b, orbits with a period Pb = 5.3518 ± 0.0004 d and has a planet radius of 1.82+0.11-0.09 R⊙ and a mass of 5.29+0.76-0.77 M⊙, resulting in a bulk density slightly lower than that of the Earth. The stellar chemical composition and the planet properties are consistent with K2-111 b being a terrestrial planet with an iron core mass fraction lower than the Earth. We announce the existence of a second signal in the radial velocity data that we attribute to a non-transiting planet, K2-111 c, with an orbital period of 15.6785 ± 0.0064 d, orbiting in near-3:1 mean motion resonance with the transiting planet, and a minimum planet mass of 11.3 ± 1.1 M⊙. Both planet signals are independently detected in the HARPS-N and ESPRESSO data when fitted separately. There are potentially more planets in this resonant system, but more well-sampled data are required to confirm their presence and physical parameters.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11577/3415747
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 4
social impact