Atmospheric retrievals on exoplanets usually involve computationally intensive Bayesian sampling methods. Large parameter spaces and increasingly complex atmospheric models create a computational bottleneck forcing a trade-off between statistical sampling accuracy and model complexity. It is especially true for upcoming JWST and ARIEL observations. We introduce ExoGAN, the Exoplanet Generative Adversarial Network, a new deep-learning algorithm able to recognize molecular features, atmospheric trace-gas abundances, and planetary parameters using unsupervised learning. Once trained, ExoGAN is widely applicable to a large number of instruments and planetary types. The ExoGAN retrievals constitute a significant speed improvement over traditional retrievals and can be used either as a final atmospheric analysis or provide prior constraints to subsequent retrieval.
ExoGAN: Retrieving exoplanetary atmospheres using deep convolutional generative adversarial networks
Zingales T.;
2018
Abstract
Atmospheric retrievals on exoplanets usually involve computationally intensive Bayesian sampling methods. Large parameter spaces and increasingly complex atmospheric models create a computational bottleneck forcing a trade-off between statistical sampling accuracy and model complexity. It is especially true for upcoming JWST and ARIEL observations. We introduce ExoGAN, the Exoplanet Generative Adversarial Network, a new deep-learning algorithm able to recognize molecular features, atmospheric trace-gas abundances, and planetary parameters using unsupervised learning. Once trained, ExoGAN is widely applicable to a large number of instruments and planetary types. The ExoGAN retrievals constitute a significant speed improvement over traditional retrievals and can be used either as a final atmospheric analysis or provide prior constraints to subsequent retrieval.File | Dimensione | Formato | |
---|---|---|---|
Zingales_2018_AJ_156_268.pdf
accesso aperto
Tipologia:
Published (publisher's version)
Licenza:
Creative commons
Dimensione
1.78 MB
Formato
Adobe PDF
|
1.78 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.