Stray flux analysis is an interesting source of information for the diagnosis of Induction Motors (IMs). The widespread use of these motors in industry leads to a necessity of additional tools and methods for their predictive maintenance. On the other hand, soft-starters are increasingly used to reduce the high consumption of IMs at start-up. In this work, AI techniques based on convolutional neural networks are applied to detect rotor faults in soft-started motors. The objective is the automatic early detection of broken bars, avoiding the necessity of user intervention to interpret the obtained results. This work proves the potential of the methodology, including a successful set of experimental results.
Fault Detection in Soft-started Induction Motors using Convolutional Neural Network Enhanced by Data Augmentation Techniques
Pasqualotto D.;Zigliotto M.;
2021
Abstract
Stray flux analysis is an interesting source of information for the diagnosis of Induction Motors (IMs). The widespread use of these motors in industry leads to a necessity of additional tools and methods for their predictive maintenance. On the other hand, soft-starters are increasingly used to reduce the high consumption of IMs at start-up. In this work, AI techniques based on convolutional neural networks are applied to detect rotor faults in soft-started motors. The objective is the automatic early detection of broken bars, avoiding the necessity of user intervention to interpret the obtained results. This work proves the potential of the methodology, including a successful set of experimental results.File | Dimensione | Formato | |
---|---|---|---|
Fault_Detection_in_Soft-started_Induction_Motors_using_Convolutional_Neural_Network_Enhanced_by_Data_Augmentation_Techniques.pdf
Accesso riservato
Descrizione: Articolo principale
Tipologia:
Published (publisher's version)
Licenza:
Accesso privato - non pubblico
Dimensione
1.2 MB
Formato
Adobe PDF
|
1.2 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.