Fabricating an artificial solid electrolyte interface (SEI) is a promising approach to improve cycling stability of lithium metal batteries. In this work, a new category of artificial SEI based on oxygen vacancy-rich hybrid nanoparticles was prepared by covalently grafting polymers from yttria–stabilized zirconia (YSZ) nanoparticles via surface-initiated atom transfer radical polymerization (SI-ATRP). The hairy nanoparticles had high dispersibility in dimethylsulfoxide, and were solution casted into uniform thin films with high inorganic content, high ionic conductivity (>1 × 10−4 S/cm at r.t.), and good mechanical properties (Young's modulus 7.56 GPa). No dendrite formation was observed by in-situ optical microscopy on a lithium metal protected by such artificial SEI. Protected anodes were stably cycled at 3 mA/cm2 and 3 mA h/cm2 with low overpotentials (20 mV) for >2500 h. LiNi0.8Co0.15Al0.05O2 (NCA)|Li full cells with protected Li anode showed much higher specific discharge capacity at various rates and improved capacity retention compared to unprotected Li anode.

Grafting polymer from oxygen-vacancy-rich nanoparticles to enable protective layers for stable lithium metal anode

Lorandi F.;
2020

Abstract

Fabricating an artificial solid electrolyte interface (SEI) is a promising approach to improve cycling stability of lithium metal batteries. In this work, a new category of artificial SEI based on oxygen vacancy-rich hybrid nanoparticles was prepared by covalently grafting polymers from yttria–stabilized zirconia (YSZ) nanoparticles via surface-initiated atom transfer radical polymerization (SI-ATRP). The hairy nanoparticles had high dispersibility in dimethylsulfoxide, and were solution casted into uniform thin films with high inorganic content, high ionic conductivity (>1 × 10−4 S/cm at r.t.), and good mechanical properties (Young's modulus 7.56 GPa). No dendrite formation was observed by in-situ optical microscopy on a lithium metal protected by such artificial SEI. Protected anodes were stably cycled at 3 mA/cm2 and 3 mA h/cm2 with low overpotentials (20 mV) for >2500 h. LiNi0.8Co0.15Al0.05O2 (NCA)|Li full cells with protected Li anode showed much higher specific discharge capacity at various rates and improved capacity retention compared to unprotected Li anode.
2020
File in questo prodotto:
File Dimensione Formato  
Lorandi2020 - Nano En - PAN grafted YSZ artificial SEI Li metal.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 5.65 MB
Formato Adobe PDF
5.65 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3417700
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 28
social impact