Lithium metal anode based rechargeable batteries (LMBs) are regarded as a highly appealing alternatives to replace state-of-the-art lithium ion batteries (LIBs) for applications that demand higher energy density. Due to the highly reactive nature of metallic lithium and the related challenges with regard to dendrite issues at the anode, and electrolyte and cathode design, the industrial success of LMBs is yet to be safely achieved. Traditionally, in an LMB, the role of polymeric components is mostly limited to separators and cathode binders. With the advancement in polymer chemistry and its growing applications in materials science, it is now recognized that functional polymers can greatly improve the practical performance of an LMB. This paper discusses some representative studies, in order to demonstrate how various macromolecular approaches could be adopted to improve LMBs especially concerning the anode side, including electrolyte and artificial solid electrolyte interphase.

Polymer Chemistry for Improving Lithium Metal Anodes

Lorandi F.;
2020

Abstract

Lithium metal anode based rechargeable batteries (LMBs) are regarded as a highly appealing alternatives to replace state-of-the-art lithium ion batteries (LIBs) for applications that demand higher energy density. Due to the highly reactive nature of metallic lithium and the related challenges with regard to dendrite issues at the anode, and electrolyte and cathode design, the industrial success of LMBs is yet to be safely achieved. Traditionally, in an LMB, the role of polymeric components is mostly limited to separators and cathode binders. With the advancement in polymer chemistry and its growing applications in materials science, it is now recognized that functional polymers can greatly improve the practical performance of an LMB. This paper discusses some representative studies, in order to demonstrate how various macromolecular approaches could be adopted to improve LMBs especially concerning the anode side, including electrolyte and artificial solid electrolyte interphase.
File in questo prodotto:
File Dimensione Formato  
Lorandi2020 - Macromol Chem Phys - Polymer for Li anode(Trend).pdf

non disponibili

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3417718
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact