The photophysical process of localized surface plasmon resonance (LSPR) is, for the first time, exploited for broadband photon harvesting in photo-regulated controlled/living radical polymerization. Efficient macromolecular synthesis was achieved under illumination with light wavelengths extending from the visible to the near-infrared regions. Plasmonic Ag nanostructures were in situ generated on Ag3PO4 photocatalysts in a reversible addition-fragmentation chain transfer (RAFT) system, thereby promoting polymerization of various monomers following a LSPR-mediated electron transfer mechanism. Owing to the LSPR-enhanced broadband photon harvesting, high monomer conversion (>99 %) was achieved under natural sunlight within 0.8 h. The deep penetration of NIR light enabled successful polymerization with reaction vessels screened by opaque barriers. Moreover, by trapping active oxygen species generated in the photocatalytic process, polymerization could be implemented without pre-deoxygenation.

Localized Surface Plasmon Resonance Meets Controlled/Living Radical Polymerization: An Adaptable Strategy for Broadband Light-Regulated Macromolecular Synthesis

Lorandi F.;
2019

Abstract

The photophysical process of localized surface plasmon resonance (LSPR) is, for the first time, exploited for broadband photon harvesting in photo-regulated controlled/living radical polymerization. Efficient macromolecular synthesis was achieved under illumination with light wavelengths extending from the visible to the near-infrared regions. Plasmonic Ag nanostructures were in situ generated on Ag3PO4 photocatalysts in a reversible addition-fragmentation chain transfer (RAFT) system, thereby promoting polymerization of various monomers following a LSPR-mediated electron transfer mechanism. Owing to the LSPR-enhanced broadband photon harvesting, high monomer conversion (>99 %) was achieved under natural sunlight within 0.8 h. The deep penetration of NIR light enabled successful polymerization with reaction vessels screened by opaque barriers. Moreover, by trapping active oxygen species generated in the photocatalytic process, polymerization could be implemented without pre-deoxygenation.
File in questo prodotto:
File Dimensione Formato  
Lorandi2019 - Angew Chem Int Ed - Plasmon.pdf

non disponibili

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 2.89 MB
Formato Adobe PDF
2.89 MB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3417730
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 39
social impact