Cold plasma based treatment of contaminated water is becoming a promising novel green remediation option. This study assessed the performance of two different cold plasma reactors, using, respectively, a self-pulsing discharge (SPD) and a multipin corona discharge (MCD), in the degradation of dimethyl phthalate (DMP), a persistent and ubiquitous pollutant of the aquatic environment. The process kinetics and energy efficiency, as well as the main plasma generated reactive species were determined under various operating conditions concerning the plasma feed gas and flowrate, the voltage polarity, the input power, the DMP initial concentration, the liquid conductivity, and the aqueous matrix used to prepare DMP solutions for these experiments. The MCD reactor, operated with air as plasma feed gas and negative voltage polarity, gave the best results in terms of rate and energy efficiency. Moreover, variations in plasma input power and in the liquid conductivity have limited effect on DMP degradation rate, making this reactor suitable for treating liquids with a range of initial conductivities The effects of DMP initial concentration on its rate of degradation and on the process energy efficiency were also investigated. Differences in the efficiency of production and distribution of plasma generated reactive species, notably •OH and H2O2, observed for the two tested reactors are discussed in terms of different extension of the plasma/liquid interface and diffusion into the bulk solution. It is proposed that among the reactive species, •OH foremost, and O3 to a lesser extent, play a pivotal role in DMP degradation, while the contribution of H2O2 appears to be limited. The rate of DMP degradation was not drastically different in Milli-Q water and in tap water, a positive outcome in view of practical applications of the technology. The lower rate observed in tap than in Milli-Q water is attributed to the presence of bicarbonate and carbonate, which are known scavengers of hydroxyl radicals.

Atmospheric plasma-based approaches for the degradation of dimethyl phthalate (DMP) in water

Saleem M.
Writing – Original Draft Preparation
;
Tomei G.
Investigation
;
Marotta E.
Supervision
;
Paradisi C.
Writing – Review & Editing
2022

Abstract

Cold plasma based treatment of contaminated water is becoming a promising novel green remediation option. This study assessed the performance of two different cold plasma reactors, using, respectively, a self-pulsing discharge (SPD) and a multipin corona discharge (MCD), in the degradation of dimethyl phthalate (DMP), a persistent and ubiquitous pollutant of the aquatic environment. The process kinetics and energy efficiency, as well as the main plasma generated reactive species were determined under various operating conditions concerning the plasma feed gas and flowrate, the voltage polarity, the input power, the DMP initial concentration, the liquid conductivity, and the aqueous matrix used to prepare DMP solutions for these experiments. The MCD reactor, operated with air as plasma feed gas and negative voltage polarity, gave the best results in terms of rate and energy efficiency. Moreover, variations in plasma input power and in the liquid conductivity have limited effect on DMP degradation rate, making this reactor suitable for treating liquids with a range of initial conductivities The effects of DMP initial concentration on its rate of degradation and on the process energy efficiency were also investigated. Differences in the efficiency of production and distribution of plasma generated reactive species, notably •OH and H2O2, observed for the two tested reactors are discussed in terms of different extension of the plasma/liquid interface and diffusion into the bulk solution. It is proposed that among the reactive species, •OH foremost, and O3 to a lesser extent, play a pivotal role in DMP degradation, while the contribution of H2O2 appears to be limited. The rate of DMP degradation was not drastically different in Milli-Q water and in tap water, a positive outcome in view of practical applications of the technology. The lower rate observed in tap than in Milli-Q water is attributed to the presence of bicarbonate and carbonate, which are known scavengers of hydroxyl radicals.
File in questo prodotto:
File Dimensione Formato  
JEMA_First submitted version.pdf

accesso aperto

Descrizione: Prima versione inviata
Tipologia: Preprint (submitted version)
Licenza: Accesso libero
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3420648
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
  • OpenAlex ND
social impact