In the study of small molecule ligands and candidate macromolecular targets, water spins in long-lived association with macromolecules (proteins or nanoparticles) constitute a remarkable source of magnetization that can be exploited to reveal ligand-target binding. In this work we show how the selective saturation of water spins complemented with adiabatic off-resonance spin-locks can remove the NOE contribution of bulk water in the final difference spectrum, leading to uniformly enhanced signals that reveal weak ligand-target interactions.

Uniform water-mediated saturation transfer: a sensitivity-improved alternative to WaterLOGSY

De Biasi, Federico;Rastrelli, Federico
2022

Abstract

In the study of small molecule ligands and candidate macromolecular targets, water spins in long-lived association with macromolecules (proteins or nanoparticles) constitute a remarkable source of magnetization that can be exploited to reveal ligand-target binding. In this work we show how the selective saturation of water spins complemented with adiabatic off-resonance spin-locks can remove the NOE contribution of bulk water in the final difference spectrum, leading to uniformly enhanced signals that reveal weak ligand-target interactions.
File in questo prodotto:
File Dimensione Formato  
Manuscript_JMR_final.pdf

accesso aperto

Tipologia: Preprint (submitted version)
Licenza: Accesso gratuito
Dimensione 891.53 kB
Formato Adobe PDF
891.53 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3420891
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact