Electric vehicles are being considered as one of the pillar of eco-friendly solutions to overcome the problem of global pollution and radiations due to greenhouse gases. Present thesis work reports the improvement in overall performance of the propulsion system of an electric vehicle by improving autonomy and torque-speed characteristic. Electric vehicle propulsion system consists of supply and traction system, and are coordinated by the monitoring & control system. Case of light electric vehicle propulsion system with permanent-magnet (PM) brushless dc (BLDC) drive being used in electric scooters and electric-mini cars is considered for analytical study and the implementation of the proposed solutions. PM BLDC motor and voltage source inverter are considered as a part of traction system and electric energy source such as battery, fuel cell or photovoltaic panel are considered as a part of supply system. Available electric energy sources are capable of delivering higher current at lower terminal voltage, so are connected either in series or -more often- to the higher voltage dc-link through a circuital arrangement (boost topology) to achieve higher voltage. For the evaluation of boost topologies, traditional dc-to-dc boost converter with cascade VSI (DBI) and Z-source inverter (ZSI) are considered for fuel cell and battery as on-board energy sources. Evaluation of the convenience of the two supply topologies is carried out in terms of the factors defining transistor power utilization, and voltage and current transistor solicitation. In addition to mentioned defined factors, sizing of the passive components in terms of the power contribution factor of fuel cell is considered. In respect to the defined factors, DBI supply is found to be beneficial for PM BLDC drive whereas, with respect to the power contribution factor, ZSI supply is good to adopt for the cases were major contribution of power is from battery. For the improvement in torque-speed characteristics of the considered drive, issue of torque ripple due to non-ideal phase commutation in case of conventional square-wave phase current (SqPC) supply is studied analytically by establishing a correlation between the behavior of the commutating phase currents and motor torque. Behavior of the motor torque during commutation for low and high speed zone as a function motor speed and defined motor specific quantity are explained in detailed. The analytical results are used to explain the dropping torque-speed characteristic of the drive and are verified experimentally for a propulsion drive available in the laboratory. Dropping torque-speed characteristic limits the use of the drive up till the nominal speed. To overcome this issue sinusoidal phase current (SPC) supply is proposed. SPC offers constant motor torque. A detailed convenience analysis of SPC over SqPC is carried out. Strategy for the implementation of SPC supply is also discussed and the analytical results were verified by the experimentally. The study of the PM BLDC drive by means of the space phasor/vector approach has been executed. While such an approach is quite common for drives with motors with sinusoidal back-emf and phase currents, it is not explored in the literature for the present case, where back-emfs are trapezoidal and phase currents are square-wave in nature. Behavior of the PM BLDC drive has been revisited in stationary plane and the current commutation between the motor phases has been explained with the help of phase variable vectors. All the results obtained in a-b-c plane are cross verified in stationary plane showing the simplicity and potentialities of the vector approach for PM BLDC drive. To address the issue of the autonomy of electric vehicles, use of solar energy to assist the on-board batteries of an electric mini-car is considered. Photovoltaic Geographical Information Systems database provided by Joint Research Centre Europe, is used to estimate the solar irradiance available in Padova, Italy. Output of a 0.487 sq-meter, 20-cell multi-crystalline PV panel is estimated and accordingly a conventional dc-to-dc boost converter is designed to interface PV panel with dc-link of a mini-car available in the laboratory. Appropriate control is implemented through DSP to track maximum power point. Whole system was tested outside the laboratory and measurements were carried out. Analytical loss model of the dc-to-dc boost converter is developed to explain the variations in gain, efficiency and loss components of the converter under varying solar irradiance. The thesis work has been carried out at the Laboratory of “Electric systems for automation and automotive” headed by Prof. Giuseppe Buja. The laboratory belongs to the Department of Industrial Engineering of the University of Padova

I veicoli elettrici sono considerati uno dei pilastri tra le soluzioni ecosostenibili per superare il problema dell’inquinamento globale dovuto ai gas serra. Questo lavoro di tesi tratta del miglioramento delle prestazioni complessive di un sistema di propulsione di un veicolo elettrico mediante l’aumento dell’autonomia e della caratteristica coppia-velocità. Il sistema di propulsione di un veicolo elettrico consiste in un sistema di alimentazione e di un sistema di trazione, coordinati da un sistema di monitoraggio e controllo. Lo studio analitico e l’implementazione della soluzione proposta per il sistema di propulsione sono stati svolti con riferimento ad un motore brushless a magneti permanenti con fem trapezoidale (PM BLDC), utilizzato comunemente in veicoli elettrici leggeri come gli scooter e le mini-car. Il sistema di propulsione è costituito dal motore PM BLDC e dall’invertitore di tensione, mentre il sistema di alimentazione è formato da sorgenti energia elettrica come le batterie, le celle a combustibile o i pannelli fotovoltaici. Le sorgenti di energia elettrica disponibili sul mercato consentono di raggiungere elevati valori di corrente ma con bassi valori di tensione. Al fine di ottenere i valori di tensioni richiesti dal bus in continua, esse sono collegate in serie tra loro o sono connesse mediante convertitori innalzatori di tensione. Ciò può avvenire o attraverso un tradizionale convertitore dc/dc innalzatore con in cascata un invertitore di tensione (DBI) o attraverso un invertitore di tipo Z-source (ZSI). La valutazione di convenienza delle due modalità di alimentazione è basata sul fattore di utilizzazione e sulle sollecitazioni in termini di corrente e tensione dei transistor di potenza. Oltre ai fattori menzionati in precedenza, sono stati dimensionati gli elementi passivi in funzione della quota parte di potenza fornita dalla cella a combustibile. In relazione ai parametri definiti, la migliore soluzione risulta essere l’alimentazione con DBI, mentre quella con ZSI appare conveniente quando la maggior parte della potenza assorbita dal carico sia fornita dalle batterie. Al fine di migliorare le prestazioni di coppia, il ripple di coppia dovuto alla non ideale commutazione del convertitore ad onda quadra (SqPC) è stato studiato analiticamente, stabilendo la correlazione tra le correnti durante la fase di commutazione e la coppia del motore. Il comportamento di coppia a basse ed ad alte velocità è stato esaminato in dettaglio utilizzando specifiche grandezze del motore. I risultati analitici sono stati utilizzati per spiegare la caduta della coppia sviluppata dal motore ad alte velocità; essi sono stati verificati sperimentalmente su un azionamento di propulsione disponibile in laboratorio. La non costanza della caratteristica coppia-velocità limita l’uso del motore nei pressi della velocità nominale. Per superare questo limite è stata altresi utilizzata un’alimentazione con corrente sinusoidale (SPC). Essa permette di fornire al motore una coppia costante. E’ stata quindi eseguita un’analisi dettagliata al fine di vedere quale sia il metodo di alimentazione più conveniente tra SqPC e SPC. È stata altresì descritta la strategia d’implementazione dell’alimentazione SPC, e i risultati analitici sono stati verificati sperimentalmente. E’ stato eseguito lo studio degli azionamenti con motori PM BLDC con l’approccio dei fasori spaziali. Mentre questo approccio è abbastanza comune nel caso di azionamenti con motori con forza contro-elettromotrice e correnti di sinusoidali, esso non è trattato in letteratura per gli azionamenti con motori PM BLDC, in quanto la forza contro-elettromotrice è trapezoidale e il profilo delle correnti di fase è un onda quadra. Il comportamento del motore PM BLDC è stato rivisitato sul piano stazionario e la commutazione della corrente tra le fasi è stata descritta con l’ausilio dei vettori delle grandezze di fase. Tutti i risultati ottenuti nel piano a-b-c sono stati verificati nel piano stazionario, mostrando la semplicità e le potenzialità dell’approccio vettoriale. Al fine di estendere l’autonomia del veicolo sono stati utilizzati dei pannelli fotovoltaici. Il Sistema Geografico di Informazioni Fotovoltaico sviluppato dal Joint Research Center Europe è stato utilizzato per stimare il valore d’irraggiamento solare disponibile a Padova. È stata stimata la potenza generata da un pannello fotovoltaico di superficie 0.487 m2, formato da 20 celle multi-cristalline, e in relazione ad essa, è stato progettato il convertitore dc-dc elevatore per interfacciare il pannello fotovoltaico al bus in continua di una mini-car disponibile in laboratorio. Un appropriato controllo è stato implementato in un processore DSP al fine di inseguire il punto di massima potenza. L’intero sistema è stato provato all’esterno del laboratorio, facendo le misure necessarie per le verifiche. Un modello analitico delle perdite del convertitore dc-dc elevatore è stato sviluppato per descrivere la variazione di guadagno, rendimento e perdite del convertitore al variare dell’irraggiamento solare. Il lavoro di tesi è stato sviluppato presso il Laboratorio di “Sistemi elettrici per l’automazione e la veicolistica” diretto dal Prof. Giuseppe Buja. Il laboratorio afferisce al Dipartimento di Ingegneria Industriale dell’Università di Padova

Electric Vehicle Propulsion System / Keshri, Ritesh Kumar. - (2014 Jan 28).

Electric Vehicle Propulsion System

Keshri, Ritesh Kumar
2014

Abstract

I veicoli elettrici sono considerati uno dei pilastri tra le soluzioni ecosostenibili per superare il problema dell’inquinamento globale dovuto ai gas serra. Questo lavoro di tesi tratta del miglioramento delle prestazioni complessive di un sistema di propulsione di un veicolo elettrico mediante l’aumento dell’autonomia e della caratteristica coppia-velocità. Il sistema di propulsione di un veicolo elettrico consiste in un sistema di alimentazione e di un sistema di trazione, coordinati da un sistema di monitoraggio e controllo. Lo studio analitico e l’implementazione della soluzione proposta per il sistema di propulsione sono stati svolti con riferimento ad un motore brushless a magneti permanenti con fem trapezoidale (PM BLDC), utilizzato comunemente in veicoli elettrici leggeri come gli scooter e le mini-car. Il sistema di propulsione è costituito dal motore PM BLDC e dall’invertitore di tensione, mentre il sistema di alimentazione è formato da sorgenti energia elettrica come le batterie, le celle a combustibile o i pannelli fotovoltaici. Le sorgenti di energia elettrica disponibili sul mercato consentono di raggiungere elevati valori di corrente ma con bassi valori di tensione. Al fine di ottenere i valori di tensioni richiesti dal bus in continua, esse sono collegate in serie tra loro o sono connesse mediante convertitori innalzatori di tensione. Ciò può avvenire o attraverso un tradizionale convertitore dc/dc innalzatore con in cascata un invertitore di tensione (DBI) o attraverso un invertitore di tipo Z-source (ZSI). La valutazione di convenienza delle due modalità di alimentazione è basata sul fattore di utilizzazione e sulle sollecitazioni in termini di corrente e tensione dei transistor di potenza. Oltre ai fattori menzionati in precedenza, sono stati dimensionati gli elementi passivi in funzione della quota parte di potenza fornita dalla cella a combustibile. In relazione ai parametri definiti, la migliore soluzione risulta essere l’alimentazione con DBI, mentre quella con ZSI appare conveniente quando la maggior parte della potenza assorbita dal carico sia fornita dalle batterie. Al fine di migliorare le prestazioni di coppia, il ripple di coppia dovuto alla non ideale commutazione del convertitore ad onda quadra (SqPC) è stato studiato analiticamente, stabilendo la correlazione tra le correnti durante la fase di commutazione e la coppia del motore. Il comportamento di coppia a basse ed ad alte velocità è stato esaminato in dettaglio utilizzando specifiche grandezze del motore. I risultati analitici sono stati utilizzati per spiegare la caduta della coppia sviluppata dal motore ad alte velocità; essi sono stati verificati sperimentalmente su un azionamento di propulsione disponibile in laboratorio. La non costanza della caratteristica coppia-velocità limita l’uso del motore nei pressi della velocità nominale. Per superare questo limite è stata altresi utilizzata un’alimentazione con corrente sinusoidale (SPC). Essa permette di fornire al motore una coppia costante. E’ stata quindi eseguita un’analisi dettagliata al fine di vedere quale sia il metodo di alimentazione più conveniente tra SqPC e SPC. È stata altresì descritta la strategia d’implementazione dell’alimentazione SPC, e i risultati analitici sono stati verificati sperimentalmente. E’ stato eseguito lo studio degli azionamenti con motori PM BLDC con l’approccio dei fasori spaziali. Mentre questo approccio è abbastanza comune nel caso di azionamenti con motori con forza contro-elettromotrice e correnti di sinusoidali, esso non è trattato in letteratura per gli azionamenti con motori PM BLDC, in quanto la forza contro-elettromotrice è trapezoidale e il profilo delle correnti di fase è un onda quadra. Il comportamento del motore PM BLDC è stato rivisitato sul piano stazionario e la commutazione della corrente tra le fasi è stata descritta con l’ausilio dei vettori delle grandezze di fase. Tutti i risultati ottenuti nel piano a-b-c sono stati verificati nel piano stazionario, mostrando la semplicità e le potenzialità dell’approccio vettoriale. Al fine di estendere l’autonomia del veicolo sono stati utilizzati dei pannelli fotovoltaici. Il Sistema Geografico di Informazioni Fotovoltaico sviluppato dal Joint Research Center Europe è stato utilizzato per stimare il valore d’irraggiamento solare disponibile a Padova. È stata stimata la potenza generata da un pannello fotovoltaico di superficie 0.487 m2, formato da 20 celle multi-cristalline, e in relazione ad essa, è stato progettato il convertitore dc-dc elevatore per interfacciare il pannello fotovoltaico al bus in continua di una mini-car disponibile in laboratorio. Un appropriato controllo è stato implementato in un processore DSP al fine di inseguire il punto di massima potenza. L’intero sistema è stato provato all’esterno del laboratorio, facendo le misure necessarie per le verifiche. Un modello analitico delle perdite del convertitore dc-dc elevatore è stato sviluppato per descrivere la variazione di guadagno, rendimento e perdite del convertitore al variare dell’irraggiamento solare. Il lavoro di tesi è stato sviluppato presso il Laboratorio di “Sistemi elettrici per l’automazione e la veicolistica” diretto dal Prof. Giuseppe Buja. Il laboratorio afferisce al Dipartimento di Ingegneria Industriale dell’Università di Padova
28-gen-2014
Electric vehicles are being considered as one of the pillar of eco-friendly solutions to overcome the problem of global pollution and radiations due to greenhouse gases. Present thesis work reports the improvement in overall performance of the propulsion system of an electric vehicle by improving autonomy and torque-speed characteristic. Electric vehicle propulsion system consists of supply and traction system, and are coordinated by the monitoring & control system. Case of light electric vehicle propulsion system with permanent-magnet (PM) brushless dc (BLDC) drive being used in electric scooters and electric-mini cars is considered for analytical study and the implementation of the proposed solutions. PM BLDC motor and voltage source inverter are considered as a part of traction system and electric energy source such as battery, fuel cell or photovoltaic panel are considered as a part of supply system. Available electric energy sources are capable of delivering higher current at lower terminal voltage, so are connected either in series or -more often- to the higher voltage dc-link through a circuital arrangement (boost topology) to achieve higher voltage. For the evaluation of boost topologies, traditional dc-to-dc boost converter with cascade VSI (DBI) and Z-source inverter (ZSI) are considered for fuel cell and battery as on-board energy sources. Evaluation of the convenience of the two supply topologies is carried out in terms of the factors defining transistor power utilization, and voltage and current transistor solicitation. In addition to mentioned defined factors, sizing of the passive components in terms of the power contribution factor of fuel cell is considered. In respect to the defined factors, DBI supply is found to be beneficial for PM BLDC drive whereas, with respect to the power contribution factor, ZSI supply is good to adopt for the cases were major contribution of power is from battery. For the improvement in torque-speed characteristics of the considered drive, issue of torque ripple due to non-ideal phase commutation in case of conventional square-wave phase current (SqPC) supply is studied analytically by establishing a correlation between the behavior of the commutating phase currents and motor torque. Behavior of the motor torque during commutation for low and high speed zone as a function motor speed and defined motor specific quantity are explained in detailed. The analytical results are used to explain the dropping torque-speed characteristic of the drive and are verified experimentally for a propulsion drive available in the laboratory. Dropping torque-speed characteristic limits the use of the drive up till the nominal speed. To overcome this issue sinusoidal phase current (SPC) supply is proposed. SPC offers constant motor torque. A detailed convenience analysis of SPC over SqPC is carried out. Strategy for the implementation of SPC supply is also discussed and the analytical results were verified by the experimentally. The study of the PM BLDC drive by means of the space phasor/vector approach has been executed. While such an approach is quite common for drives with motors with sinusoidal back-emf and phase currents, it is not explored in the literature for the present case, where back-emfs are trapezoidal and phase currents are square-wave in nature. Behavior of the PM BLDC drive has been revisited in stationary plane and the current commutation between the motor phases has been explained with the help of phase variable vectors. All the results obtained in a-b-c plane are cross verified in stationary plane showing the simplicity and potentialities of the vector approach for PM BLDC drive. To address the issue of the autonomy of electric vehicles, use of solar energy to assist the on-board batteries of an electric mini-car is considered. Photovoltaic Geographical Information Systems database provided by Joint Research Centre Europe, is used to estimate the solar irradiance available in Padova, Italy. Output of a 0.487 sq-meter, 20-cell multi-crystalline PV panel is estimated and accordingly a conventional dc-to-dc boost converter is designed to interface PV panel with dc-link of a mini-car available in the laboratory. Appropriate control is implemented through DSP to track maximum power point. Whole system was tested outside the laboratory and measurements were carried out. Analytical loss model of the dc-to-dc boost converter is developed to explain the variations in gain, efficiency and loss components of the converter under varying solar irradiance. The thesis work has been carried out at the Laboratory of “Electric systems for automation and automotive” headed by Prof. Giuseppe Buja. The laboratory belongs to the Department of Industrial Engineering of the University of Padova
Electric Vehicle Propulsion System, Permanent Magnet Brushless DC (PM BLDC) drive, Current control, Torque-speed characteristic, Photovoltaic, DC-to-DC energy conversion
Electric Vehicle Propulsion System / Keshri, Ritesh Kumar. - (2014 Jan 28).
File in questo prodotto:
File Dimensione Formato  
Keshri_Ritesh_tesi.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 4.89 MB
Formato Adobe PDF
4.89 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3423806
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact