The possibility to produce stainless steel components at limited cost and characterized by elevated mechanical properties, has gained more importance in the last years. Nowadays, the cold and warm forging processes of carbon steels are widely used to form industrial parts due to their economic advantages, but there is still lack of extensive research on industrial process design and evaluation of the microstructural properties of cold-warm forged stainless steel parts. In the last few decades, the environment concerning the recent forging industry has been rapidly changed. Now, near-net-shape or net-shape manufacturing processes are becoming a useful practice in metal forming, resulting in saving material and energy. Many parts produced with machining can be manufactured at lower cost by cold and warm forging. Traditionally, forging design is carried out using mainly empirical guidelines, experience, and trial-and-error, which results in a long process development time and high production costs. In order to avoid this, in recent years, computer-aided simulation approaches have proved to be powerful tools to predict and analyze material deformation during a metal forming operation. There are now many commercial finite-element (FE) packages to simulate forging and bulk metalworking processes. To date, most have focussed on predicting the shape of the final product after simple or complex single- or multi-stage forming operations. On the other hand, other aspects are being included in these numerical models, such as an improved understanding of the constitutive material behaviour, friction and lubrication conditions, and the properties of the final product, in order to predict more complicated phenomena such as tool life prediction, ductile fracture and microstructure evaluation. The focus of this PhD thesis is the development of an innovative approach based on the design of integrated experimental procedures and modelling tools, in order to accurately re-design a range of industrial single-stage cold-warm forming processes to form stainless steel components and investigate the microstructural evolution of forged parts obtained at different forging temperatures. In addition, the design of a multi-stage cold forging process of a low-carbon steel and the prediction of surface defects that occur in each stage of the forming-sequence have been carried out. To this aim, a series of tensile tests were conducted to evaluate the influence of temperature and strain rate on the materials elasto-plastic properties. Futhermore, an innovative experimental setup was used to reproduce the realistic friction conditions at the tool-workpiece interface, in order to accurately predict metal flow during forging cycles. Experimental data were subsequently validated and implemented in a commercial 3D-FE software and accurately calibrated to perform fully coupled numerical simulations for the reference processes. Finally, the forged parts obtained were characterized by macro- and microstructural inspections in order to evaluate the presence of underfilling problems and surface defects, which were consistent with the numerical FE results coming from both simulated processes (i.e. single- and multi-stage forging), and to analyze the microstructural evolution of α- and γ-phase during single-stage tests both at room temperature and from 400 to 700 °C. The materials investigated in this work are low-carbon AISI 1005 ferritic-pearlitic steel (Wr. N. 1.0303), AISI 304L austenitic (Wr. N. 1.4307) and commercially named Duplex 2205 ferritic-austenitic stainless steel (Wr. N. 1.4462). The developed experimental tests are suitable to proper evaluation of steels behaviour in terms of mechanical properties, and to precisely calibrate coupled numerical models when they are applied to conventional and re-design forging processes. The techniques used in this work include: tensile tests, T-shape compression tests, visual inspections (i.e. supported by vernier calliper and micrometer measurements), hardness and micro-hardness tests, LOM (Light Optical Microscopy), FEG-ESEM (Field-Emission Gun Environmental Scanning Electron Microscope), EDS (Energy Dispersive X-ray Spectroscopy), EBSD (Electron Back Scattering Diffraction) and numerical models carried out with FORGE2011®-3D.

La possibilità di produrre componenti in acciaio inossidabile a costo limitato e caratterizzati da elevate proprietà meccaniche, ha assunto notevole importanza negli ultimi anni. Al giorno d'oggi, i processi di stampaggio a freddo e a semicaldo di acciai al carbonio sono ampiamente usati per produrre componenti industriali, grazie ai loro vantaggi economici, ma è ancora assente in letteratura un'ampia ricerca di nuovi metodi di progettazione industriale di processi di deformazione plastica a freddo e a semicaldo di prodotti in acciaio inossidabile, con la successiva valutazione delle proprietà microstrutturali. Negli ultimi decenni, l'industria dei processi di stampaggio è cambiata rapidamente. Ora i processi produttivi near-net-shape o net-shape stanno diventando una pratica utile nella formatura dei metalli, garantendo notevoli risparmi di materiale ed energetici. Molti componenti, ottenuti con lavorazioni per asportazione di truciolo, possono essere prodotti a basso costo mediante stampaggio a freddo o a semicaldo. Tradizionalmente, la progettazione dei processi di forgiatura avviene utilizzando linee guida empiriche, basate sull'esperienza e su tentativi trail-and-error da parte dei progettisti, che si traducono poi in tempi di sviluppo del processi e costi di produzione elevati. Per evitare ciò, negli ultimi anni, gli approcci di simulazione numerica si sono dimostrati strumenti potenti per prevedere e analizzare la deformazione del materiale mediante processo di formatura. Attualmente sul mercato sono presenti molti pacchetti commerciali adatti a simulare i processi di forgiatura dei metalli e la maggior parte di essi sono concentrati sulla previsione della forma del prodotto finale dopo operazioni di formatura semplici o complesse, mono- o multi-stadio. Altri aspetti vengono inclusi in questi modelli numerici, quali una migliore comprensione del comportamento del materiale, delle condizioni di attrito e lubrificazione e delle proprietà del prodotto finale, per poter prevedere fenomeni più complicati come la stima della vita dell'utensile, delle condizioni di frattura duttile e la valutazione della microstruttura. Lo scopo della presente tesi di dottorato è lo sviluppo di un approccio innovativo basato sulla progettazione di procedure sperimentali integrate con strumenti di modellazione numerica, per riprogettare accuratamente una serie di processi di forgiatura industriali mono-stadio adatti alla produzione di componenti in acciaio inossidabile a diverse temperature. Inoltre è stata effettuata la riprogettazione di un processo di formatura multi-stadio a freddo di un acciaio a basso tenore di carbonio, con la successiva previsione dei difetti superficiali che si verificano in ogni fase della sequenza di formatura. A tale scopo sono stati condotti una serie di test di trazione, per valutare l'influenza della temperatura e della velocità di deformazione sulle proprietà elasto-plastiche dei materiali considerati. Inoltre è stato realizzato un innovativo apparato sperimentale per riprodurre le condizioni di attrito reali all'interfaccia tra lo spezzone e l'utensile, al fine di prevedere con precisione il flusso del metallo in fase di deformazione plastica. I dati sperimentali sono stati validati e implementati in un software commerciale agli elementi finiti 3D-FE e successivamente calibrati con precisione, per effettuare accurate simulazioni numeriche dei processi di riferimento. I componenti forgiati ottenuti sono stati oggetto di indagini macro e microstrutturali, per valutare l'eventuale presenza di difetti superficiali, e analizzare l'evoluzione microstrutturale della fase α e γ a diverse temperature di forgiatura (i.e. 20, 400, 500, 600, 700 °C). I risultati sperimentali sono stati successivamente validati mediante simulazione numerica. I materiali studiati in questo lavoro sono: acciaio ferritico-perlitico AISI 1005 a basso tenore di carbonio (Wr. N. 1.0303), AISI 304L austenitico (Wr. N. 1.4307) e ferritico-austenitico Duplex 2205 (Wr. N. 1.4462). Le prove sperimentali sviluppate sono adatte ad una corretta valutazione del comportamento degli acciai in termini di proprietà meccaniche, calibrando con precisione i modelli numerici se applicate a processi industriali di forgiatura tradizionali e riprogettati. Le tecniche utilizzate in questo lavoro prevedono: test di trazione, test di compressione T-shape, controlli visivi (mediante calibro cinquantesimale e micrometro), misure di durezza e microdurezza, microscopia ottica (LOM), microscopia elettronica a scansione ad emissione di campo (FEG-ESEM), spettroscopia a dispersione di energia (EDS), diffrazione da retrodiffusione elettronica (EBSD) e modelli numerici sviluppati in FORGE2011®-3D.

Optimization of industrial processes for forging of carbon and stainless steels / Bassan, Fabio. - (2015 Jan 29).

Optimization of industrial processes for forging of carbon and stainless steels

Bassan, Fabio
2015

Abstract

La possibilità di produrre componenti in acciaio inossidabile a costo limitato e caratterizzati da elevate proprietà meccaniche, ha assunto notevole importanza negli ultimi anni. Al giorno d'oggi, i processi di stampaggio a freddo e a semicaldo di acciai al carbonio sono ampiamente usati per produrre componenti industriali, grazie ai loro vantaggi economici, ma è ancora assente in letteratura un'ampia ricerca di nuovi metodi di progettazione industriale di processi di deformazione plastica a freddo e a semicaldo di prodotti in acciaio inossidabile, con la successiva valutazione delle proprietà microstrutturali. Negli ultimi decenni, l'industria dei processi di stampaggio è cambiata rapidamente. Ora i processi produttivi near-net-shape o net-shape stanno diventando una pratica utile nella formatura dei metalli, garantendo notevoli risparmi di materiale ed energetici. Molti componenti, ottenuti con lavorazioni per asportazione di truciolo, possono essere prodotti a basso costo mediante stampaggio a freddo o a semicaldo. Tradizionalmente, la progettazione dei processi di forgiatura avviene utilizzando linee guida empiriche, basate sull'esperienza e su tentativi trail-and-error da parte dei progettisti, che si traducono poi in tempi di sviluppo del processi e costi di produzione elevati. Per evitare ciò, negli ultimi anni, gli approcci di simulazione numerica si sono dimostrati strumenti potenti per prevedere e analizzare la deformazione del materiale mediante processo di formatura. Attualmente sul mercato sono presenti molti pacchetti commerciali adatti a simulare i processi di forgiatura dei metalli e la maggior parte di essi sono concentrati sulla previsione della forma del prodotto finale dopo operazioni di formatura semplici o complesse, mono- o multi-stadio. Altri aspetti vengono inclusi in questi modelli numerici, quali una migliore comprensione del comportamento del materiale, delle condizioni di attrito e lubrificazione e delle proprietà del prodotto finale, per poter prevedere fenomeni più complicati come la stima della vita dell'utensile, delle condizioni di frattura duttile e la valutazione della microstruttura. Lo scopo della presente tesi di dottorato è lo sviluppo di un approccio innovativo basato sulla progettazione di procedure sperimentali integrate con strumenti di modellazione numerica, per riprogettare accuratamente una serie di processi di forgiatura industriali mono-stadio adatti alla produzione di componenti in acciaio inossidabile a diverse temperature. Inoltre è stata effettuata la riprogettazione di un processo di formatura multi-stadio a freddo di un acciaio a basso tenore di carbonio, con la successiva previsione dei difetti superficiali che si verificano in ogni fase della sequenza di formatura. A tale scopo sono stati condotti una serie di test di trazione, per valutare l'influenza della temperatura e della velocità di deformazione sulle proprietà elasto-plastiche dei materiali considerati. Inoltre è stato realizzato un innovativo apparato sperimentale per riprodurre le condizioni di attrito reali all'interfaccia tra lo spezzone e l'utensile, al fine di prevedere con precisione il flusso del metallo in fase di deformazione plastica. I dati sperimentali sono stati validati e implementati in un software commerciale agli elementi finiti 3D-FE e successivamente calibrati con precisione, per effettuare accurate simulazioni numeriche dei processi di riferimento. I componenti forgiati ottenuti sono stati oggetto di indagini macro e microstrutturali, per valutare l'eventuale presenza di difetti superficiali, e analizzare l'evoluzione microstrutturale della fase α e γ a diverse temperature di forgiatura (i.e. 20, 400, 500, 600, 700 °C). I risultati sperimentali sono stati successivamente validati mediante simulazione numerica. I materiali studiati in questo lavoro sono: acciaio ferritico-perlitico AISI 1005 a basso tenore di carbonio (Wr. N. 1.0303), AISI 304L austenitico (Wr. N. 1.4307) e ferritico-austenitico Duplex 2205 (Wr. N. 1.4462). Le prove sperimentali sviluppate sono adatte ad una corretta valutazione del comportamento degli acciai in termini di proprietà meccaniche, calibrando con precisione i modelli numerici se applicate a processi industriali di forgiatura tradizionali e riprogettati. Le tecniche utilizzate in questo lavoro prevedono: test di trazione, test di compressione T-shape, controlli visivi (mediante calibro cinquantesimale e micrometro), misure di durezza e microdurezza, microscopia ottica (LOM), microscopia elettronica a scansione ad emissione di campo (FEG-ESEM), spettroscopia a dispersione di energia (EDS), diffrazione da retrodiffusione elettronica (EBSD) e modelli numerici sviluppati in FORGE2011®-3D.
29-gen-2015
The possibility to produce stainless steel components at limited cost and characterized by elevated mechanical properties, has gained more importance in the last years. Nowadays, the cold and warm forging processes of carbon steels are widely used to form industrial parts due to their economic advantages, but there is still lack of extensive research on industrial process design and evaluation of the microstructural properties of cold-warm forged stainless steel parts. In the last few decades, the environment concerning the recent forging industry has been rapidly changed. Now, near-net-shape or net-shape manufacturing processes are becoming a useful practice in metal forming, resulting in saving material and energy. Many parts produced with machining can be manufactured at lower cost by cold and warm forging. Traditionally, forging design is carried out using mainly empirical guidelines, experience, and trial-and-error, which results in a long process development time and high production costs. In order to avoid this, in recent years, computer-aided simulation approaches have proved to be powerful tools to predict and analyze material deformation during a metal forming operation. There are now many commercial finite-element (FE) packages to simulate forging and bulk metalworking processes. To date, most have focussed on predicting the shape of the final product after simple or complex single- or multi-stage forming operations. On the other hand, other aspects are being included in these numerical models, such as an improved understanding of the constitutive material behaviour, friction and lubrication conditions, and the properties of the final product, in order to predict more complicated phenomena such as tool life prediction, ductile fracture and microstructure evaluation. The focus of this PhD thesis is the development of an innovative approach based on the design of integrated experimental procedures and modelling tools, in order to accurately re-design a range of industrial single-stage cold-warm forming processes to form stainless steel components and investigate the microstructural evolution of forged parts obtained at different forging temperatures. In addition, the design of a multi-stage cold forging process of a low-carbon steel and the prediction of surface defects that occur in each stage of the forming-sequence have been carried out. To this aim, a series of tensile tests were conducted to evaluate the influence of temperature and strain rate on the materials elasto-plastic properties. Futhermore, an innovative experimental setup was used to reproduce the realistic friction conditions at the tool-workpiece interface, in order to accurately predict metal flow during forging cycles. Experimental data were subsequently validated and implemented in a commercial 3D-FE software and accurately calibrated to perform fully coupled numerical simulations for the reference processes. Finally, the forged parts obtained were characterized by macro- and microstructural inspections in order to evaluate the presence of underfilling problems and surface defects, which were consistent with the numerical FE results coming from both simulated processes (i.e. single- and multi-stage forging), and to analyze the microstructural evolution of α- and γ-phase during single-stage tests both at room temperature and from 400 to 700 °C. The materials investigated in this work are low-carbon AISI 1005 ferritic-pearlitic steel (Wr. N. 1.0303), AISI 304L austenitic (Wr. N. 1.4307) and commercially named Duplex 2205 ferritic-austenitic stainless steel (Wr. N. 1.4462). The developed experimental tests are suitable to proper evaluation of steels behaviour in terms of mechanical properties, and to precisely calibrate coupled numerical models when they are applied to conventional and re-design forging processes. The techniques used in this work include: tensile tests, T-shape compression tests, visual inspections (i.e. supported by vernier calliper and micrometer measurements), hardness and micro-hardness tests, LOM (Light Optical Microscopy), FEG-ESEM (Field-Emission Gun Environmental Scanning Electron Microscope), EDS (Energy Dispersive X-ray Spectroscopy), EBSD (Electron Back Scattering Diffraction) and numerical models carried out with FORGE2011®-3D.
Forging, Low-carbon steel, Stainless steel
Optimization of industrial processes for forging of carbon and stainless steels / Bassan, Fabio. - (2015 Jan 29).
File in questo prodotto:
File Dimensione Formato  
bassan_fabio_tesi.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 10.29 MB
Formato Adobe PDF
10.29 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3423990
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact