Per poter valutare, dal punto di vista economico, in quali condizioni la tecnologia da fusione può essere un elemento chiave di un sistema di generazione elettrica futuro, è indispensabile disporre di strumenti di calcolo adeguati, in grado di simulare in modo semplice un reattore a fusione calcolando il costo di generazione, un sistema energetico, composto da differenti centrali elettriche, e di valutare per il sistema il costo medio di generazione. Il lavoro di tesi inizia con la presentazione del codice di calcolo FRESCO (Fusion REactor Simplified COst): un codice sviluppato in linguaggio C++ che mira a modellare in modo semplificato un reattore a fusione basato sulla configurazione tokamak. FRESCO permette di calcolare i parametri geometrici, fisici ed ingegneristici di una centrale a fusione e di effettuare un’analisi economica valutando il costo di generazione. Come lavoro sono presentati prima i miglioramenti introdotti in FRESCO, come il modello del sistema di pompaggio per la camera da vuoto del reattore e l’integrazione tra il codice FRESCO ed un programma di ottimizzazione basato sugli algoritmi genetici. Sarà poi descritto lo studio condotto per capire come gli intervalli operativi di un reattore a fusione possono influire sul costo di generazione, accompagnato dall’ottimizzazione di questi intervalli per ottenere il minimo costo di generazione. Nella seconda parte della tesi è presentato nel dettaglio il codice di calcolo COMESE C++ (COsto MEdio del Sistema Elettrico): un codice realizzato durante il lavoro di tesi allo scopo di avere uno strumento per lo sviluppo di nuovi scenari energetici. In particolare scenari che possano evidenziare come la tecnologia della fusione nucleare possa fare parte del parco di generazione elettrica. Il codice di calcolo COMESE C++ utilizza i dati della domanda elettrica e della generazione di un Paese, assieme ai dati delle tecnologie e dei sistemi di accumulo, per poter simulare uno scenario energetico. Esso permette di valutare se la generazione ipotizzata riesce a soddisfare la domanda, e in quel caso calcola il costo medio di generazione dello scenario, avendo la possibilità di eseguire un’analisi stocastica basata sul metodo Monte Carlo, per tenere conto dell’incertezza sui parametri economici delle tecnologie di generazione. Il codice COMESE C++ è stato utilizzato per definire due scenari energetici europei 100% rinnovabili: uno per il Nord Europa basato sulla tecnologa di generazione eolica e uno per il Sud Europa basato sulle tecnologie di generazione fotovoltaiche. Partendo da questi scenari di riferimento sono poi stati sviluppati nuovi scenari con la tecnologia da fusione, ed è stata fatta un analisi per determinare il costo di investimento di centrali elettriche a fusione tale da rendere competitiva la tecnologia e ridurre il costo medio di generazione di uno scenario energetico.
In order to be able to evaluate, from an economic point of view, under which conditions fusion technology can be a key element of a future electricity generation system, adequate calculation tools are needed to simulate a fusion reactor in a simple way and calculate the cost of electricity generated. Other tools are required to simulate an energy system, composed of different power plants, and to evaluate the system cost of electricity. The thesis work begins with the presentation of the FRESCO code (Fusion REactor Simplified COst): a code developed in C ++ language with the aim to model in a simplified way a D-T fusion power plant based on the tokamak configuration. In FRESCO the power plant is studied from a technical and an economical point of view. It allows the users to calculate reactor parameters i.e. geometrical and physical dimension of the power plant, electromagnetic parameters of the machine, net electricity production, auxiliary energy needed, the operative cycle phases (especially for the pulsed configuration), and not last, the related capital cost and the cost of electricity. As part of the thesis work, the improvements introduced in FRESCO are presented first, such as the model of the reactor chamber vacuum pumping system, and the integration between the FRESCO code and an optimization program based on genetic algorithms. Then, the analysis of the effects of the duration of the operative phases in a pulsed power plant on the cost of electricity is presented. In the second part of the thesis, the COMESE code (COsto MEdio del Sistema Elettrico, Average Cost of the Electric System) is described. The code developed as a part of the doctoral research activities, is used to develop and test energy scenarios. In particular, scenarios that can show how nuclear fusion technology can be part of the electricity generation park. The COMESE C ++ calculation code uses the electricity demand and generation data of a country, together with the data of the technologies and storage systems, in order to simulate an energy scenario. It allows to evaluate if the hypothesized generation succeeds in satisfying the demand. In that case, it calculates the levelized cost of timely electricity (LCOTE) for the scenario. It also offers the possibility to perform a stochastic analysis, based on the Monte Carlo method, in order to take into account the uncertainty on the economic parameters of generation technologies. An application of the COMESE C ++ code is presented. Two fully renewable European energy scenarios, one for Northern Europe based on the wind generation technology and one for Southern Europe based on photovoltaic generation technologies, are studied and compared. Alternative scenarios including fusion technology were developed, in order to estimate which economic conditions (overnight cost) fusion power plants can be competitive and bring a benefit to the levelized cost of timely electricity of an energy scenario.
Assessment of the economics of fusion energy as a key element of a future sustainable energy mix / Maggio, Daniele. - (2018 Nov 30).
Assessment of the economics of fusion energy as a key element of a future sustainable energy mix
Maggio, Daniele
2018
Abstract
In order to be able to evaluate, from an economic point of view, under which conditions fusion technology can be a key element of a future electricity generation system, adequate calculation tools are needed to simulate a fusion reactor in a simple way and calculate the cost of electricity generated. Other tools are required to simulate an energy system, composed of different power plants, and to evaluate the system cost of electricity. The thesis work begins with the presentation of the FRESCO code (Fusion REactor Simplified COst): a code developed in C ++ language with the aim to model in a simplified way a D-T fusion power plant based on the tokamak configuration. In FRESCO the power plant is studied from a technical and an economical point of view. It allows the users to calculate reactor parameters i.e. geometrical and physical dimension of the power plant, electromagnetic parameters of the machine, net electricity production, auxiliary energy needed, the operative cycle phases (especially for the pulsed configuration), and not last, the related capital cost and the cost of electricity. As part of the thesis work, the improvements introduced in FRESCO are presented first, such as the model of the reactor chamber vacuum pumping system, and the integration between the FRESCO code and an optimization program based on genetic algorithms. Then, the analysis of the effects of the duration of the operative phases in a pulsed power plant on the cost of electricity is presented. In the second part of the thesis, the COMESE code (COsto MEdio del Sistema Elettrico, Average Cost of the Electric System) is described. The code developed as a part of the doctoral research activities, is used to develop and test energy scenarios. In particular, scenarios that can show how nuclear fusion technology can be part of the electricity generation park. The COMESE C ++ calculation code uses the electricity demand and generation data of a country, together with the data of the technologies and storage systems, in order to simulate an energy scenario. It allows to evaluate if the hypothesized generation succeeds in satisfying the demand. In that case, it calculates the levelized cost of timely electricity (LCOTE) for the scenario. It also offers the possibility to perform a stochastic analysis, based on the Monte Carlo method, in order to take into account the uncertainty on the economic parameters of generation technologies. An application of the COMESE C ++ code is presented. Two fully renewable European energy scenarios, one for Northern Europe based on the wind generation technology and one for Southern Europe based on photovoltaic generation technologies, are studied and compared. Alternative scenarios including fusion technology were developed, in order to estimate which economic conditions (overnight cost) fusion power plants can be competitive and bring a benefit to the levelized cost of timely electricity of an energy scenario.File | Dimensione | Formato | |
---|---|---|---|
maggio_daniele_tesi.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
22.07 MB
Formato
Adobe PDF
|
22.07 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.