Local area energy networks (E-LANs) are cyber-physical systems whose physical layer is a meshed low-voltage microgrid fed by a multiplicity of sources, i.e., utilities, energy storage systems, and distributed power sources. The cyber layer includes distributed measurement, control, and communication units, located at end-user premises, as well as centralized supervision and dispatchment control. As compared with standard microgrid, the E-LAN encompasses the ability for end-users to actively contribute to the operation of the microgrid while acting as independent energy traders in the electrical market. Operational goals include active contribution of end-users to power sharing, loss reduction, voltage stability, demand response, fault identification and clearing, isolation of sub-grids for maintenance, islanding, and black start. Economic goals include the possibility, for each end-user, to decide in every moment, based on convenience, how his energy and power capacity is shared with other users, e.g., for demand response or to trade energy in the electric market. This paper introduces a comprehensive theoretical approach of E-LAN control to achieve all the above operational goals while providing a high level of dynamic protection against faults or other events affecting the system functionality, e.g., overloads or fast transients. It shows that meshed microgrids are the necessary infrastructure to implement the desired functionalities.

Generalized Control of the Power Flow in Local Area Energy Networks

Tenti P.;Caldognetto T.
2022

Abstract

Local area energy networks (E-LANs) are cyber-physical systems whose physical layer is a meshed low-voltage microgrid fed by a multiplicity of sources, i.e., utilities, energy storage systems, and distributed power sources. The cyber layer includes distributed measurement, control, and communication units, located at end-user premises, as well as centralized supervision and dispatchment control. As compared with standard microgrid, the E-LAN encompasses the ability for end-users to actively contribute to the operation of the microgrid while acting as independent energy traders in the electrical market. Operational goals include active contribution of end-users to power sharing, loss reduction, voltage stability, demand response, fault identification and clearing, isolation of sub-grids for maintenance, islanding, and black start. Economic goals include the possibility, for each end-user, to decide in every moment, based on convenience, how his energy and power capacity is shared with other users, e.g., for demand response or to trade energy in the electric market. This paper introduces a comprehensive theoretical approach of E-LAN control to achieve all the above operational goals while providing a high level of dynamic protection against faults or other events affecting the system functionality, e.g., overloads or fast transients. It shows that meshed microgrids are the necessary infrastructure to implement the desired functionalities.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3427737
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact