Two homometallic Coordination Polymers (CPs) with composition [Ln(hfac)3bipy]n (Ln3+ = Eu3+, 1, and Tb3+, 2; hfac = hexafluoroacetylacetonato, bipy = 4,4′-bipyridine) were used to develop a family of ratiometric luminescent thermometers containing Eu3+ and Tb3+ as red and green emitters, respectively. The thermometric properties of pure CPs and of their mixtures having an Eu3+/Tb3+ molar ratio of 1:1, 1:3, 1:5, and 1:10 (samples: Eu1Tb1, Eu1Tb3, Eu1Tb5, and Eu1Tb10) were studied in the 83–383 K temperature range. Irrespective of the chemical composition, we observed similar thermometric responses characterized by broad applicative temperature ranges (from 100 to 165 K wide), and high relative thermal sensitivity values (Sr ), up to 2.40% K−1, in the physiological temperature range (298–318 K). All samples showed emissions endowed with peculiar and continuous color variation from green (83 K) to red (383 K) that can be exploited to develop a colorimetric temperature indicator. At fixed temperature, the color of the emitted light can be tuned by varying composition and excitation wavelength.

1d-zigzag eu3+/tb3+ coordination chains as luminescent ratiometric thermometers endowed with multicolor emission

Bellucci L.;Bottaro G.;Armelao L.
2021

Abstract

Two homometallic Coordination Polymers (CPs) with composition [Ln(hfac)3bipy]n (Ln3+ = Eu3+, 1, and Tb3+, 2; hfac = hexafluoroacetylacetonato, bipy = 4,4′-bipyridine) were used to develop a family of ratiometric luminescent thermometers containing Eu3+ and Tb3+ as red and green emitters, respectively. The thermometric properties of pure CPs and of their mixtures having an Eu3+/Tb3+ molar ratio of 1:1, 1:3, 1:5, and 1:10 (samples: Eu1Tb1, Eu1Tb3, Eu1Tb5, and Eu1Tb10) were studied in the 83–383 K temperature range. Irrespective of the chemical composition, we observed similar thermometric responses characterized by broad applicative temperature ranges (from 100 to 165 K wide), and high relative thermal sensitivity values (Sr ), up to 2.40% K−1, in the physiological temperature range (298–318 K). All samples showed emissions endowed with peculiar and continuous color variation from green (83 K) to red (383 K) that can be exploited to develop a colorimetric temperature indicator. At fixed temperature, the color of the emitted light can be tuned by varying composition and excitation wavelength.
2021
File in questo prodotto:
File Dimensione Formato  
materials-14-06445-v2.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 2.93 MB
Formato Adobe PDF
2.93 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3427959
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact