In the present work, surface engineering of Ti6Al4V, produced via selective laser melting parts, was carried out with the aim of investigating how surface features of substrate may improve the coupling with AlTiN coatings deposited by physical vapor deposition reactive high-power impulse magnetron sputtering. In particular, the work highlighted how vacuum thermal treatments at 800 °C induced peculiar mesoscale morphology and surface chemical modifications of the Ti6Al4V, which contributed to improve the adhesion of the deposited AlTiN thin films. Chemical composition, crystallographic structure, and surface properties of both substrates and coatings were analyzed by field emission scanning electron microscopy (equipped with energy dispersive spectroscopy), atomic force microscopy, x-ray photoelectron spectroscopy, x-ray diffraction, nanoindentation, and scratch test measurements.

Vacuum Thermal Treatments for Surface Engineering of Selective Laser Melted Ti6Al4V Alloy

Battiston S.;Montagner F.;Zin V.;Rancan M.;Armelao L.
2021

Abstract

In the present work, surface engineering of Ti6Al4V, produced via selective laser melting parts, was carried out with the aim of investigating how surface features of substrate may improve the coupling with AlTiN coatings deposited by physical vapor deposition reactive high-power impulse magnetron sputtering. In particular, the work highlighted how vacuum thermal treatments at 800 °C induced peculiar mesoscale morphology and surface chemical modifications of the Ti6Al4V, which contributed to improve the adhesion of the deposited AlTiN thin films. Chemical composition, crystallographic structure, and surface properties of both substrates and coatings were analyzed by field emission scanning electron microscopy (equipped with energy dispersive spectroscopy), atomic force microscopy, x-ray photoelectron spectroscopy, x-ray diffraction, nanoindentation, and scratch test measurements.
File in questo prodotto:
File Dimensione Formato  
Battiston2021_Article_VacuumThermalTreatmentsForSurf.pdf

non disponibili

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3427963
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact