Total hip arthroplasty is one of the most common and successful orthopedic surgeries. Sometimes, periprosthetic osteolysis occurs associated with the stress-shielding effect: it results in the reduction of bone density, where the femur is not correctly loaded, and in the formation of denser bone, where stresses are confined. This paper illustrates the stress shielding effect as a cause of the failing replacement of the hip joint. An extensive literature survey has been accomplished to describe the phenomenon and identify solutions. The latter refer to the design criteria and the choice of innovative materials/treatments for prosthetic device production. Experimental studies and numerical simulations have been reviewed. The paper includes an introduction to explain the scope; a section illustrating the causes of the stress shielding effect; a section focusing on recent attempts to redefine prosthetic device design criteria, current strategies to improve the osteointegration process, and a number of innovative biomaterials; functionally graded materials are presented in a dedicated section: they allow customizing prosthesis features with respect to the host bone. Conclusions recommend an integrated approach for the production of new prosthetic devices: the “engineering community” has to support the “medical community” to assure an effective translation of research results into clinical practice.

When the Total Hip Replacement Fails: A Review on the Stress-Shielding Effect

Bagno, Andrea
2022

Abstract

Total hip arthroplasty is one of the most common and successful orthopedic surgeries. Sometimes, periprosthetic osteolysis occurs associated with the stress-shielding effect: it results in the reduction of bone density, where the femur is not correctly loaded, and in the formation of denser bone, where stresses are confined. This paper illustrates the stress shielding effect as a cause of the failing replacement of the hip joint. An extensive literature survey has been accomplished to describe the phenomenon and identify solutions. The latter refer to the design criteria and the choice of innovative materials/treatments for prosthetic device production. Experimental studies and numerical simulations have been reviewed. The paper includes an introduction to explain the scope; a section illustrating the causes of the stress shielding effect; a section focusing on recent attempts to redefine prosthetic device design criteria, current strategies to improve the osteointegration process, and a number of innovative biomaterials; functionally graded materials are presented in a dedicated section: they allow customizing prosthesis features with respect to the host bone. Conclusions recommend an integrated approach for the production of new prosthetic devices: the “engineering community” has to support the “medical community” to assure an effective translation of research results into clinical practice.
2022
File in questo prodotto:
File Dimensione Formato  
When the Total Hip Replacement Fails A Review on the stress shielding effect.zip

accesso aperto

Descrizione: Manoscritto
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 11.71 MB
Formato Zip File
11.71 MB Zip File Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3435530
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 40
social impact