The end-Triassic mass extinction (ETME) was associated with intensified deep-water anoxia in epicontinental seas and mid-depth waters, yet the absolute oxygenation state in the shallow ocean is uncharacterized. Here we report carbonate-associated iodine data from the peritidal Mount Sparagio section (Southern Italy) that documents the ETME (~ 200 Ma) in the western Tethys. We find a sharp drop in carbonate I/(Ca + Mg) ratios across the extinction horizon and persisting into the Early Jurassic. This records local dissolved oxygen and iodate decline in the near-surface ocean of low-latitude Tethys due to the development of depleted oxygen concentrations. Consequently, during the ETME even shallow-water animals, such as the megalodonts seen at Mount Sparagio, were likely the victims of oxygen-poor conditions. The shallow ocean deoxygenation coincides with the synchronous spread of deeper anoxic waters and widespread anoxic deposition on continental shelves and slopes. An upwards expansion of the mid-water oxygen minimum zone in the latest Triassic shoaled the oxycline and triggered a major marine crisis.

Shallow ocean oxygen decline during the end-Triassic mass extinction

Dal Corso J.;Di Stefano P.;Rigo M.;
2022

Abstract

The end-Triassic mass extinction (ETME) was associated with intensified deep-water anoxia in epicontinental seas and mid-depth waters, yet the absolute oxygenation state in the shallow ocean is uncharacterized. Here we report carbonate-associated iodine data from the peritidal Mount Sparagio section (Southern Italy) that documents the ETME (~ 200 Ma) in the western Tethys. We find a sharp drop in carbonate I/(Ca + Mg) ratios across the extinction horizon and persisting into the Early Jurassic. This records local dissolved oxygen and iodate decline in the near-surface ocean of low-latitude Tethys due to the development of depleted oxygen concentrations. Consequently, during the ETME even shallow-water animals, such as the megalodonts seen at Mount Sparagio, were likely the victims of oxygen-poor conditions. The shallow ocean deoxygenation coincides with the synchronous spread of deeper anoxic waters and widespread anoxic deposition on continental shelves and slopes. An upwards expansion of the mid-water oxygen minimum zone in the latest Triassic shoaled the oxycline and triggered a major marine crisis.
File in questo prodotto:
File Dimensione Formato  
He et al., 2022 - GPC.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3438670
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 10
social impact