Thermal and residual stress distributions induced by the gas tungsten arc welding (GTAW) process on Inconel 625 were studied using numerical simulation and experiments. A multi-pass welding model was developed that uses a volumetric heat source. Thermomechanical analysis is carried out to assess the Thermal and residual stress distributions. Experiments were carried out with 5 mm thick Inconel 625 plates. X-ray diffraction techniques were used to measure residual stresses, and IR thermometry was employed to capture the temperature values on the welded joints. Simulations were performed with ANSYS numerical code, and a close agreement was found between the predicted and experimentally measured residual stress. Thermal measurements were collected pass by pass from the analysis, and the agreement was 9.08%. The agreement between the measured and analysed residual stress was 11%.

Thermal and Residual Stress Distributions in Inconel 625 Butt-Welded Plates: Simulation and Experimental Validation

Ferro P.
;
2021

Abstract

Thermal and residual stress distributions induced by the gas tungsten arc welding (GTAW) process on Inconel 625 were studied using numerical simulation and experiments. A multi-pass welding model was developed that uses a volumetric heat source. Thermomechanical analysis is carried out to assess the Thermal and residual stress distributions. Experiments were carried out with 5 mm thick Inconel 625 plates. X-ray diffraction techniques were used to measure residual stresses, and IR thermometry was employed to capture the temperature values on the welded joints. Simulations were performed with ANSYS numerical code, and a close agreement was found between the predicted and experimentally measured residual stress. Thermal measurements were collected pass by pass from the analysis, and the agreement was 9.08%. The agreement between the measured and analysed residual stress was 11%.
File in questo prodotto:
File Dimensione Formato  
3948129.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 4.3 MB
Formato Adobe PDF
4.3 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3439125
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 3
social impact