Interest in the catalytic activation of peroxides, together with the requirement of stereoselectivity for the production of enantiopure sulfoxides, has made sulfoxidation the ideal playground for theoretical and experimental physical organic chemists investigating oxidation reactivity. Efforts have been dedicated for elucidating the catalytic pathway regarding these species and for dissecting out the dominant factors influencing the yield and stereochemistry. In this article, Ti(IV) and Hf(IV) aminotriphenolate complexes have been prepared and investigated as catalysts in the presence of peroxides in sulfide oxidation. Experimental results have been combined with theoretical calculations obtaining detailed mechanistic information on oxygen transfer processes. The study revealed that steric issues are mainly responsible for the formation of intermediates in the oxidation pathway. In particular, we could highlight the occurrence of a blended situation where the steric effects of sulfides, ligands, and oxidants influence the formation of different intermediates and reaction pathways.
Elucidating Sulfide Activation Mode in Metal-Catalyzed Sulfoxidation Reactivity
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Zonta C.
						
						
						
							Membro del Collaboration Group
;Lovat S.Membro del Collaboration Group
;Licini G.
						
						
						
							Membro del Collaboration Group
	
		
		
	
			2022
Abstract
Interest in the catalytic activation of peroxides, together with the requirement of stereoselectivity for the production of enantiopure sulfoxides, has made sulfoxidation the ideal playground for theoretical and experimental physical organic chemists investigating oxidation reactivity. Efforts have been dedicated for elucidating the catalytic pathway regarding these species and for dissecting out the dominant factors influencing the yield and stereochemistry. In this article, Ti(IV) and Hf(IV) aminotriphenolate complexes have been prepared and investigated as catalysts in the presence of peroxides in sulfide oxidation. Experimental results have been combined with theoretical calculations obtaining detailed mechanistic information on oxygen transfer processes. The study revealed that steric issues are mainly responsible for the formation of intermediates in the oxidation pathway. In particular, we could highlight the occurrence of a blended situation where the steric effects of sulfides, ligands, and oxidants influence the formation of different intermediates and reaction pathways.| File | Dimensione | Formato | |
|---|---|---|---|
| garay-ruiz-et-al-2022-elucidating-sulfide-activation-mode-in-metal-catalyzed-sulfoxidation-reactivity.pdf accesso aperto 
											Tipologia:
											Published (Publisher's Version of Record)
										 
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
										Dimensione
										3.03 MB
									 
										Formato
										Adobe PDF
									 | 3.03 MB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




