The external order in reagents for the activation of alkyl halides by Cu0 was investigated in supplemental activator and reducing agents (SARA) ATRP. Using methyl 2-bromopropionate (MBrP) or ethyl α-bromophenylacetate (EBPA) and tris(2-(dimethylamino)ethyl)amine (Me6TREN) in DMSO and MeCN, it was determined that the rate of activation scaled with (S/V)0.9 in both solvents. For MBrP, the rate was first order with respect to [MBrP]0 until a saturation in the rate was observed around 33 and 110 mM in DMSO and MeCN, respectively. For EBPA, the reaction was also first order until a maximum rate was observed at 33 mM in DMSO, whereas an inverse order was observed for concentrations above 66 mM in MeCN. At saturated concentrations of MBrP, it was found that the rate increased linearly with respect to [Me6TREN]0 for all systems but became asymptotic with a maximum rate of 2 × 10−6 and 4 × 10−5 M s−1 in DMSO and MeCN, respectively. Model polymerizations in the absence of ligand showed slow reaction rates, indicating the necessity for ligand. The results allow more accurate modeling and understanding of SARA ATRP under a large range of initiator concentrations. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 3048–3057.

Activation of alkyl halides at the Cu0 surface in SARA ATRP: An assessment of reaction order and surface mechanisms

Fantin M.;
2017

Abstract

The external order in reagents for the activation of alkyl halides by Cu0 was investigated in supplemental activator and reducing agents (SARA) ATRP. Using methyl 2-bromopropionate (MBrP) or ethyl α-bromophenylacetate (EBPA) and tris(2-(dimethylamino)ethyl)amine (Me6TREN) in DMSO and MeCN, it was determined that the rate of activation scaled with (S/V)0.9 in both solvents. For MBrP, the rate was first order with respect to [MBrP]0 until a saturation in the rate was observed around 33 and 110 mM in DMSO and MeCN, respectively. For EBPA, the reaction was also first order until a maximum rate was observed at 33 mM in DMSO, whereas an inverse order was observed for concentrations above 66 mM in MeCN. At saturated concentrations of MBrP, it was found that the rate increased linearly with respect to [Me6TREN]0 for all systems but became asymptotic with a maximum rate of 2 × 10−6 and 4 × 10−5 M s−1 in DMSO and MeCN, respectively. Model polymerizations in the absence of ligand showed slow reaction rates, indicating the necessity for ligand. The results allow more accurate modeling and understanding of SARA ATRP under a large range of initiator concentrations. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 3048–3057.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3439818
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact