Fennel, or Foeniculum vulgare Mill., is an important horticultural crop belonging to the Apiaceae family that is cultivated worldwide and used in the agri-food sector and for pharmaceutical preparations. Breeding strategies in this species usually involve three parental lines, including two maternal lines (one cytoplasmic male-sterile line and an ideotype representative maintainer line) that are crossed to obtain an ideotype representative of the cytoplasmic male-sterile line and one paternal line, used as a pollinator in crosses with the progeny of the derived maternal lines. From this cross, F1 hybrid progenies are obtained, which are characterized by high levels of heterozygosity and hybrid vigor. In this study, over 450 plants, representing 8 breeding populations and their respective 3 parental and 1 progeny line, were genotyped by means of codominant molecular markers. The 12 highly polymorphic microsatellites enabled the analyses of the genetic variability, distinctiveness and stability of each breeding line. Moreover, the genetic structure of the core collection was investigated, which, together with the homozygosity, gene flow and genetic similarity results, allowed the identification of unsuitable lines to be used in breeding plans due to their low homozygosity (10.4% in the pollinator line of population 7). Moreover, the Bayesian reconstruction of the core collection’s genetic structure, based on the codominant markers used, allowed us to confirm the distinctiveness results obtained from the genetic similarity investigation and the computed gene flow estimates. Among these, a trend in hybrid heterozygosity was also observed, that increased when the genetic similarity between the respective parental lines decreased. Thus, this research proposes a suitable method for genotyping fennel populations in pre-and post-breeding approaches, such as marker-assisted breeding or breeding line distinctiveness and stability verifications.

Molecular Characterization and Genetic Structure Evaluation of Breeding Populations of Fennel (Foeniculum vulgare Mill.)

Scariolo F.
Membro del Collaboration Group
;
Palumbo F.
Membro del Collaboration Group
;
Barcaccia G.
Membro del Collaboration Group
2022

Abstract

Fennel, or Foeniculum vulgare Mill., is an important horticultural crop belonging to the Apiaceae family that is cultivated worldwide and used in the agri-food sector and for pharmaceutical preparations. Breeding strategies in this species usually involve three parental lines, including two maternal lines (one cytoplasmic male-sterile line and an ideotype representative maintainer line) that are crossed to obtain an ideotype representative of the cytoplasmic male-sterile line and one paternal line, used as a pollinator in crosses with the progeny of the derived maternal lines. From this cross, F1 hybrid progenies are obtained, which are characterized by high levels of heterozygosity and hybrid vigor. In this study, over 450 plants, representing 8 breeding populations and their respective 3 parental and 1 progeny line, were genotyped by means of codominant molecular markers. The 12 highly polymorphic microsatellites enabled the analyses of the genetic variability, distinctiveness and stability of each breeding line. Moreover, the genetic structure of the core collection was investigated, which, together with the homozygosity, gene flow and genetic similarity results, allowed the identification of unsuitable lines to be used in breeding plans due to their low homozygosity (10.4% in the pollinator line of population 7). Moreover, the Bayesian reconstruction of the core collection’s genetic structure, based on the codominant markers used, allowed us to confirm the distinctiveness results obtained from the genetic similarity investigation and the computed gene flow estimates. Among these, a trend in hybrid heterozygosity was also observed, that increased when the genetic similarity between the respective parental lines decreased. Thus, this research proposes a suitable method for genotyping fennel populations in pre-and post-breeding approaches, such as marker-assisted breeding or breeding line distinctiveness and stability verifications.
2022
File in questo prodotto:
File Dimensione Formato  
Scariolo et al. (2022) Agronomy vol 12 art 542 p 1-11.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 2.04 MB
Formato Adobe PDF
2.04 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3439956
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact