The combination of highly sensitive techniques such as electrochemiluminescence (ECL) with nanotechnology sparked new analytical applications, in particular for immunoassay-based detection systems. In this context, nanomaterials, particularly dye-doped silica nanoparticles (DDSNPs) are of high interest, since they can offer several advantages in terms of sensitivity and performance. In this work we synthesized two sets of monodispersed and biotinylated [Ru(bpy)3]2+-doped silica nanoparticles, named bio-Triton@RuNP and bio-Igepal@RuNP, obtained following the reverse microemulsion method using two different types of nonionic surfactants. Controlling the synthetic procedures, we were able to obtain nanoparticles (NPs) offering highly intense signal, using tri-n-propylamine (TPrA) as coreactant, with bio-Triton@RuNps being more efficient than bio-Igepal@RuNP.

Dye-Doped Silica Nanoparticles for Enhanced ECL-Based Immunoassay Analytical Performance

Zanut A.;
2020

Abstract

The combination of highly sensitive techniques such as electrochemiluminescence (ECL) with nanotechnology sparked new analytical applications, in particular for immunoassay-based detection systems. In this context, nanomaterials, particularly dye-doped silica nanoparticles (DDSNPs) are of high interest, since they can offer several advantages in terms of sensitivity and performance. In this work we synthesized two sets of monodispersed and biotinylated [Ru(bpy)3]2+-doped silica nanoparticles, named bio-Triton@RuNP and bio-Igepal@RuNP, obtained following the reverse microemulsion method using two different types of nonionic surfactants. Controlling the synthetic procedures, we were able to obtain nanoparticles (NPs) offering highly intense signal, using tri-n-propylamine (TPrA) as coreactant, with bio-Triton@RuNps being more efficient than bio-Igepal@RuNP.
File in questo prodotto:
File Dimensione Formato  
Zanut et al.,AngewChem.pdf

accesso aperto

Tipologia: Published (Publisher's Version of Record)
Licenza: Creative commons
Dimensione 2.43 MB
Formato Adobe PDF
2.43 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3440349
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 99
  • ???jsp.display-item.citation.isi??? 98
  • OpenAlex ND
social impact