In the pharmaceutical industry, lyophilization is typically adopted to extend long-time stability of valuable thermolabile medicines and vaccines. Primary drying is the most time-consuming and energy-intensive step of the entire process; thus, accelerating and optimizing the primary drying recipe is a key process development goal. To that purpose, mathematical models have been proposed and successfully validated. However, models typically require invasive experiments and/or sensors (e.g. product temperatures) for parameter estimation, which are rarely available in good manufacturing practice (GMP) environment. This represents a severe limitation when leveraging the model to transfer operation recipes across different facilities and for scale-up. In this study, we assess the possibility to exploit limited industrial data for model parameter estimation, namely pressure measurements and gravimetric tests, by defining a calibration protocol that is tested on two different pieces of equipment. Results are verified on a recently proposed model, and show that statistically meaningful estimates can be obtained without the need of product temperature measurements. Model predictions and optimal inputs trajectories are comparable to those obtained from the model calibrated using the full set of temperature and pressure data.

Practical use of primary drying models in an industrial environment with limited availability of equipment sensors

Margherita Geremia;Massimiliano Barolo;Fabrizio Bezzo
2022

Abstract

In the pharmaceutical industry, lyophilization is typically adopted to extend long-time stability of valuable thermolabile medicines and vaccines. Primary drying is the most time-consuming and energy-intensive step of the entire process; thus, accelerating and optimizing the primary drying recipe is a key process development goal. To that purpose, mathematical models have been proposed and successfully validated. However, models typically require invasive experiments and/or sensors (e.g. product temperatures) for parameter estimation, which are rarely available in good manufacturing practice (GMP) environment. This represents a severe limitation when leveraging the model to transfer operation recipes across different facilities and for scale-up. In this study, we assess the possibility to exploit limited industrial data for model parameter estimation, namely pressure measurements and gravimetric tests, by defining a calibration protocol that is tested on two different pieces of equipment. Results are verified on a recently proposed model, and show that statistically meaningful estimates can be obtained without the need of product temperature measurements. Model predictions and optimal inputs trajectories are comparable to those obtained from the model calibrated using the full set of temperature and pressure data.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3441568
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact