A combined experimental and numerical investigation of the roughness of intergranular cracks in two-dimensional disordered solids is presented. We focus on brittle materials for which the characteristic length scale of damage is much smaller than the grain size. Surprisingly, brittle cracks do not follow a persistent path with a roughness exponent ζ≈0.6-0.7 as reported for a large range of materials. Instead, we show that they exhibit monoaffine scaling properties characterized by a roughness exponent ζ=0.50±0.05, which we explain theoretically from linear elastic fracture mechanics. Our findings support the description of the roughening process in two-dimensional brittle disordered solids by a random walk. Furthermore, they shed light on the failure mechanism at the origin of the persistent behavior with ζ≈0.6-0.7 observed for fractures in other materials, suggesting a unified scenario for the geometry of crack paths in two-dimensional disordered solids.

Unified scenario for the morphology of crack paths in two-dimensional disordered solids

Simone A.
2021

Abstract

A combined experimental and numerical investigation of the roughness of intergranular cracks in two-dimensional disordered solids is presented. We focus on brittle materials for which the characteristic length scale of damage is much smaller than the grain size. Surprisingly, brittle cracks do not follow a persistent path with a roughness exponent ζ≈0.6-0.7 as reported for a large range of materials. Instead, we show that they exhibit monoaffine scaling properties characterized by a roughness exponent ζ=0.50±0.05, which we explain theoretically from linear elastic fracture mechanics. Our findings support the description of the roughening process in two-dimensional brittle disordered solids by a random walk. Furthermore, they shed light on the failure mechanism at the origin of the persistent behavior with ζ≈0.6-0.7 observed for fractures in other materials, suggesting a unified scenario for the geometry of crack paths in two-dimensional disordered solids.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3443424
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact