Hybrid organicinorganic solids represent an important class of engineering materials, usually prepared by solgel processes by cross-reaction between organic and inorganic precursors. The choice of the two components and control of the reaction conditions (especially pH value) allow the synthesis of hybrid materials with novel properties and functionalities. 3- Glycidoxypropyltrimethoxysilane (GPTMS) is one of the most commonly used organic silanes for hybrid-material fabrication. Herein, the reactivity of GPTMS in water at different pH values (pH 211) was deeply investigated for the first time by solution-state multinuclear NMR spectroscopic and mass spectrometric analysis. The extent of the different and competing reactions that take place as a function of the pH value was elucidated. The NMR spectroscopic and mass spectrometric data clearly indicate that the pH value determines the kinetics of epoxide hydrolysis versus silicon condensation. Under slighly acidic conditions, the epoxy-ring hydrolysis is kinetically more favourable than the formation of the silica network. In contrast, under basic conditions, silicon condensation is the main reaction that takes place. Full characterisation of the formed intermediates was carried out by using NMR spectroscopic and mass spectrometric analysis. These results indicate that strict control of the pH values allows tuning of the reactivity of the organic and inorganic moities, thus laying the foundations for the design and synthesis of solgel hybrid biomaterials with tuneable properties. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Epoxide opening versus silica condensation during sol-gel hybrid biomaterial synthesis

Gabrielli L.;
2013

Abstract

Hybrid organicinorganic solids represent an important class of engineering materials, usually prepared by solgel processes by cross-reaction between organic and inorganic precursors. The choice of the two components and control of the reaction conditions (especially pH value) allow the synthesis of hybrid materials with novel properties and functionalities. 3- Glycidoxypropyltrimethoxysilane (GPTMS) is one of the most commonly used organic silanes for hybrid-material fabrication. Herein, the reactivity of GPTMS in water at different pH values (pH 211) was deeply investigated for the first time by solution-state multinuclear NMR spectroscopic and mass spectrometric analysis. The extent of the different and competing reactions that take place as a function of the pH value was elucidated. The NMR spectroscopic and mass spectrometric data clearly indicate that the pH value determines the kinetics of epoxide hydrolysis versus silicon condensation. Under slighly acidic conditions, the epoxy-ring hydrolysis is kinetically more favourable than the formation of the silica network. In contrast, under basic conditions, silicon condensation is the main reaction that takes place. Full characterisation of the formed intermediates was carried out by using NMR spectroscopic and mass spectrometric analysis. These results indicate that strict control of the pH values allows tuning of the reactivity of the organic and inorganic moities, thus laying the foundations for the design and synthesis of solgel hybrid biomaterials with tuneable properties. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3444246
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 63
  • ???jsp.display-item.citation.isi??? ND
social impact