A coupled Hartree-Fock scheme for fast computation of parity-violating energy differences in big-size chiral molecules of biological interest has been developed within the McWeeny-Diercksen density matrix formulation. All the required integral files and relevant matrices are represented over a basis set of atomic spin orbitals, avoiding transformation to the molecular basis. Two-electron spin-orbit matrix elements need not to be stored within the computer code implementing the theoretical method. © 2002 Elsevier Science B.V. All rights reserved.

An efficient coupled Hartree-Fock computational scheme for parity-violating energy differences in enantiomeric molecules

Soncini A.
2002

Abstract

A coupled Hartree-Fock scheme for fast computation of parity-violating energy differences in big-size chiral molecules of biological interest has been developed within the McWeeny-Diercksen density matrix formulation. All the required integral files and relevant matrices are represented over a basis set of atomic spin orbitals, avoiding transformation to the molecular basis. Two-electron spin-orbit matrix elements need not to be stored within the computer code implementing the theoretical method. © 2002 Elsevier Science B.V. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3445291
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact