This contribution describes the first results obtained within the iMPACT project, which aims to build a novel proton computed tomography (pCT) scanner for protons of energy up to 230 MeV, as used in hadron therapy. We will first describe the design of the iMPACT scanner, which is composed by a tracker and a range calorimeter. Results of test-beams, focused on the characterization of the building elements of the prototype of the calorimeter, will be presented and compared with simulations.

Simulations and test beam studies of the iMPACT calorimeter

Baruffaldi, F
2018

Abstract

This contribution describes the first results obtained within the iMPACT project, which aims to build a novel proton computed tomography (pCT) scanner for protons of energy up to 230 MeV, as used in hadron therapy. We will first describe the design of the iMPACT scanner, which is composed by a tracker and a range calorimeter. Results of test-beams, focused on the characterization of the building elements of the prototype of the calorimeter, will be presented and compared with simulations.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3454634
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact