We compare recent experimental results [Science 375, 528 (2022)] of the superfluid unitary Fermi gas near the critical temperature with a thermodynamic model based on the elementary excitations of the system. We find good agreement between experimental data and our theory for several quantities such as first sound, second sound, and superfluid fraction. We also show that mode mixing between first and second sound occurs. Finally, we characterize the response amplitude to a density perturbation: Close to the critical temperature both first and second sound can be excited through a density perturbation, whereas at lower temperatures only the first sound mode exhibits a significant response.

Unitary Fermi superfluid near the critical temperature: Thermodynamics and sound modes from elementary excitations

Bighin, G;
2022

Abstract

We compare recent experimental results [Science 375, 528 (2022)] of the superfluid unitary Fermi gas near the critical temperature with a thermodynamic model based on the elementary excitations of the system. We find good agreement between experimental data and our theory for several quantities such as first sound, second sound, and superfluid fraction. We also show that mode mixing between first and second sound occurs. Finally, we characterize the response amplitude to a density perturbation: Close to the critical temperature both first and second sound can be excited through a density perturbation, whereas at lower temperatures only the first sound mode exhibits a significant response.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3454640
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact