Despite the large number of navigation algorithms available for mobile robots, in many social contexts they often exhibit inopportune motion behaviours in proximity of people, often with very "unnatural" movements due to the execution of segmented trajectories or the sudden activation of safety mechanisms (e.g., for obstacle avoidance). We argue that the reason of the problem is not only the difficulty of modelling human behaviours and generating opportune robot control policies, but also the way human-robot spatial interactions are represented and implemented. In this paper we propose a new methodology based on a qualitative representation of spatial interactions, which is both flexible and compact, adopting the well-defined and coherent formalization of Qualitative Trajectory Calculus (QTC). We show the potential of a QTC-based approach to abstract and design complex robot behaviours, where the desired robot's motion is represented together with its actual performance in one coherent approach, focusing on spatial interactions rather than pure navigation problems. © Springer International Publishing 2013.

Qualitative design and implementation of human-robot spatial interactions

Bellotto N.;
2013

Abstract

Despite the large number of navigation algorithms available for mobile robots, in many social contexts they often exhibit inopportune motion behaviours in proximity of people, often with very "unnatural" movements due to the execution of segmented trajectories or the sudden activation of safety mechanisms (e.g., for obstacle avoidance). We argue that the reason of the problem is not only the difficulty of modelling human behaviours and generating opportune robot control policies, but also the way human-robot spatial interactions are represented and implemented. In this paper we propose a new methodology based on a qualitative representation of spatial interactions, which is both flexible and compact, adopting the well-defined and coherent formalization of Qualitative Trajectory Calculus (QTC). We show the potential of a QTC-based approach to abstract and design complex robot behaviours, where the desired robot's motion is represented together with its actual performance in one coherent approach, focusing on spatial interactions rather than pure navigation problems. © Springer International Publishing 2013.
2013
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
978-3-319-02674-9
978-3-319-02675-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3455037
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact