A genetic mouse model is used to reveal a two-pronged mechanism of fructose-induced de novo lipogenesis in the liver, in which fructose catabolism in hepatocytes provides a signal to promote lipogenesis, whereas fructose metabolism by the gut microbiota provides acetate as a substrate to feed lipogenesis.Consumption of fructose has risen markedly in recent decades owing to the use of sucrose and high-fructose corn syrup in beverages and processed foods(1), and this has contributed to increasing rates of obesity and non-alcoholic fatty liver disease(2-4). Fructose intake triggers de novo lipogenesis in the liver(4-6), in which carbon precursors of acetyl-CoA are converted into fatty acids. The ATP citrate lyase (ACLY) enzyme cleaves cytosolic citrate to generate acetyl-CoA, and is upregulated after consumption of carbohydrates(7). Clinical trials are currently pursuing the inhibition of ACLY as a treatment for metabolic diseases(8). However, the route from dietary fructose to hepatic acetyl-CoA and lipids remains unknown. Here, using in vivo isotope tracing, we show that liver-specific deletion of Acly in mice is unable to suppress fructose-induced lipogenesis. Dietary fructose is converted to acetate by the gut microbiota(9), and this supplies lipogenic acetyl-CoA independently of ACLY(10). Depletion of the microbiota or silencing of hepatic ACSS2, which generates acetyl-CoA from acetate, potently suppresses the conversion of bolus fructose into hepatic acetyl-CoA and fatty acids. When fructose is consumed more gradually to facilitate its absorption in the small intestine, both citrate cleavage in hepatocytes and microorganism-derived acetate contribute to lipogenesis. By contrast, the lipogenic transcriptional program is activated in response to fructose in a manner that is independent of acetyl-CoA metabolism. These data reveal a two-pronged mechanism that regulates hepatic lipogenesis, in which fructolysis within hepatocytes provides a signal to promote the expression of lipogenic genes, and the generation of microbial acetate feeds lipogenic pools of acetyl-CoA.

Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate

Carrer, Alessandro;
2020

Abstract

A genetic mouse model is used to reveal a two-pronged mechanism of fructose-induced de novo lipogenesis in the liver, in which fructose catabolism in hepatocytes provides a signal to promote lipogenesis, whereas fructose metabolism by the gut microbiota provides acetate as a substrate to feed lipogenesis.Consumption of fructose has risen markedly in recent decades owing to the use of sucrose and high-fructose corn syrup in beverages and processed foods(1), and this has contributed to increasing rates of obesity and non-alcoholic fatty liver disease(2-4). Fructose intake triggers de novo lipogenesis in the liver(4-6), in which carbon precursors of acetyl-CoA are converted into fatty acids. The ATP citrate lyase (ACLY) enzyme cleaves cytosolic citrate to generate acetyl-CoA, and is upregulated after consumption of carbohydrates(7). Clinical trials are currently pursuing the inhibition of ACLY as a treatment for metabolic diseases(8). However, the route from dietary fructose to hepatic acetyl-CoA and lipids remains unknown. Here, using in vivo isotope tracing, we show that liver-specific deletion of Acly in mice is unable to suppress fructose-induced lipogenesis. Dietary fructose is converted to acetate by the gut microbiota(9), and this supplies lipogenic acetyl-CoA independently of ACLY(10). Depletion of the microbiota or silencing of hepatic ACSS2, which generates acetyl-CoA from acetate, potently suppresses the conversion of bolus fructose into hepatic acetyl-CoA and fatty acids. When fructose is consumed more gradually to facilitate its absorption in the small intestine, both citrate cleavage in hepatocytes and microorganism-derived acetate contribute to lipogenesis. By contrast, the lipogenic transcriptional program is activated in response to fructose in a manner that is independent of acetyl-CoA metabolism. These data reveal a two-pronged mechanism that regulates hepatic lipogenesis, in which fructolysis within hepatocytes provides a signal to promote the expression of lipogenic genes, and the generation of microbial acetate feeds lipogenic pools of acetyl-CoA.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3455386
Citazioni
  • ???jsp.display-item.citation.pmc??? 78
  • Scopus 181
  • ???jsp.display-item.citation.isi??? 172
social impact