The strategic interest in the production of green hydrogen by sunlight-activated water splitting has stimulated significant efforts aimed at the implementation of active and cost-effective catalysts for the oxygen evolution reaction (OER), the overall process bottleneck. Herein, we report on an original fabrication route to OER electrocatalysts based on graphitic carbon nitride. In particular, the target systems were deposited on conductive glass substrates via a simple electrophoretic technique and functionalized with highly dispersed noble metals (Au, Ag or Au + Ag) in low amounts by radio frequency (RF)-sputtering under mild conditions. An advanced material characterization revealed the possibility of tailoring carbon nitride morphology as a function of the used precursor and of achieving a homogeneous spatial distribution of the functionalizing metals. The latter ranged from atomically dispersed (silver), to low-sized nanoaggregates (gold) or partially alloyed core–shell nanoparticles (gold+silver), with an intimate metal-nitride interfacial contact. Functional tests evidenced a remarkable sensitivity to Vis light even at low applied potentials, and photoelectrocatalytic performances directly dependent on the nature of metal species and on the features of the underlying carbon nitride deposit. These evidences, rationalized mainly on the basis of Schottky junctions and the possible concurrence of surface plasmon resonance (SPR), candidate the proposed strategy as a versatile route to cheap and efficient OER electrocatalysts for energy conversion.

Tailoring oxygen evolution performances of carbon nitride systems fabricated by electrophoresis through Ag and Au plasma functionalization

Benedet M.
Investigation
;
Andrea Rizzi G.
Investigation
;
Gasparotto A.
Investigation
;
Girardi L.
Investigation
;
Maccato C.
Investigation
;
Barreca D.
Investigation
2022

Abstract

The strategic interest in the production of green hydrogen by sunlight-activated water splitting has stimulated significant efforts aimed at the implementation of active and cost-effective catalysts for the oxygen evolution reaction (OER), the overall process bottleneck. Herein, we report on an original fabrication route to OER electrocatalysts based on graphitic carbon nitride. In particular, the target systems were deposited on conductive glass substrates via a simple electrophoretic technique and functionalized with highly dispersed noble metals (Au, Ag or Au + Ag) in low amounts by radio frequency (RF)-sputtering under mild conditions. An advanced material characterization revealed the possibility of tailoring carbon nitride morphology as a function of the used precursor and of achieving a homogeneous spatial distribution of the functionalizing metals. The latter ranged from atomically dispersed (silver), to low-sized nanoaggregates (gold) or partially alloyed core–shell nanoparticles (gold+silver), with an intimate metal-nitride interfacial contact. Functional tests evidenced a remarkable sensitivity to Vis light even at low applied potentials, and photoelectrocatalytic performances directly dependent on the nature of metal species and on the features of the underlying carbon nitride deposit. These evidences, rationalized mainly on the basis of Schottky junctions and the possible concurrence of surface plasmon resonance (SPR), candidate the proposed strategy as a versatile route to cheap and efficient OER electrocatalysts for energy conversion.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3456103
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact