The pelagic tunicate Salpa thompsoni is recognized as a major metazoan grazer in the Southern Ocean. Long term observations show an increase in this species’ biomass and a southward shift in its distribution both of which are positively correlated with ocean warming and winter sea ice decline around the Antarctic Peninsula. However, our understanding on how salps adapt their life cycle to the extreme seasonality of the Southern Ocean and the putative differences between its two reproductive forms (aggregates, solitaries) is rudimentary. In particular, our current knowledge of whether and how S. thompsoni overwinter is limited, largely due to winter sampling constraints. In this study, we investigated the form-specific gene expression profiles of Salpa thompsoni during the austral autumn and winter. Between the seasons, genes related to translation showed the biggest difference in gene expression. We found more genes were upregulated in solitaries compared to aggregates, indicating a potentially form-specific overwintering strategy. Our data provide first insights into the seasonal and form-specific physiology of salps by considering their complex life cycle, thereby contributing to a more comprehensive understanding of the response of salps to seasonal changes in their environment and to anthropogenic induced global climate change.

Seasonal and Form-Specific Gene Expression Signatures Uncover Different Generational Strategies of the Pelagic Tunicate Salpa thompsoni During the Southern Ocean Winter

Urso I.;Sales G.;De Pitta C.;
2022

Abstract

The pelagic tunicate Salpa thompsoni is recognized as a major metazoan grazer in the Southern Ocean. Long term observations show an increase in this species’ biomass and a southward shift in its distribution both of which are positively correlated with ocean warming and winter sea ice decline around the Antarctic Peninsula. However, our understanding on how salps adapt their life cycle to the extreme seasonality of the Southern Ocean and the putative differences between its two reproductive forms (aggregates, solitaries) is rudimentary. In particular, our current knowledge of whether and how S. thompsoni overwinter is limited, largely due to winter sampling constraints. In this study, we investigated the form-specific gene expression profiles of Salpa thompsoni during the austral autumn and winter. Between the seasons, genes related to translation showed the biggest difference in gene expression. We found more genes were upregulated in solitaries compared to aggregates, indicating a potentially form-specific overwintering strategy. Our data provide first insights into the seasonal and form-specific physiology of salps by considering their complex life cycle, thereby contributing to a more comprehensive understanding of the response of salps to seasonal changes in their environment and to anthropogenic induced global climate change.
File in questo prodotto:
File Dimensione Formato  
46_Frontiers in Marine Science_salps_16-06-2022.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 3.55 MB
Formato Adobe PDF
3.55 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3456235
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact