In the framework of investigations aimed to detect new available bioindicators in marine environment, haemolymph cells and ctenidia of the Mediterranean spiny oyster, Spondylus gaederopus, have been investigated. Haemocyte count and characterisation, phagocytosis and superoxide anion production and enzyme activity assays, have been carried out. TEM observations have been performed. After gross anatomy observations, citohistological determinations have been carried out, especially focused on ctenidia structure and function. Main results concerned the relatively low number of circulating cells, and the rich in granules granulocytes, most of which were lysosomes. Release of lysosomal enzymes was confirmed a shared trait inside bivalves. Glycogen deposits as probable result of conversion of bacteria carbohydrates, have been detected, as well as the occurrence of both acidophilic and basophilic haemocytes. Phagocytosis, both in granulocytes and agranulocytes, has been recorded, together with the production of superoxide anion. Haemocytes were found positive to acid phosphatase, alkaline phosphatase, β-glucuronidase, chloroacetylesterase and arylsulphatase. Ctenidia showed a complex organization, including two demibranch to each ctenidium, two different kinds of lamellae filament and specialized structures as ciliated disks connecting filaments in “eutherorhabdic ctenidia”. The occurrence of three different types of mucous cells in the same region of ordinary filaments has been underlined. Such features, suggesting high resistance to environmental stress and disease, allow to consider spiny oysters as promising bioindicators, although deserving of further investigations to evaluate the physiological responses to stress in controlled conditions. Present data, moreover, providing basic information on the biology of S. gaederopus, notably implement the present knowledge on the Mediterranean spiny oysters, whose under-evaluated ecological role should be carefully considered.

Identification of haemocytes and histological examination of gills of the spiny oyster Spondylus gaederopus (Linnaeus, 1758)

Fabrello, Jacopo
Membro del Collaboration Group
;
Ciscato, Maria
Membro del Collaboration Group
;
Boldrin, Francesco
Methodology
;
Matozzo, Valerio
2022

Abstract

In the framework of investigations aimed to detect new available bioindicators in marine environment, haemolymph cells and ctenidia of the Mediterranean spiny oyster, Spondylus gaederopus, have been investigated. Haemocyte count and characterisation, phagocytosis and superoxide anion production and enzyme activity assays, have been carried out. TEM observations have been performed. After gross anatomy observations, citohistological determinations have been carried out, especially focused on ctenidia structure and function. Main results concerned the relatively low number of circulating cells, and the rich in granules granulocytes, most of which were lysosomes. Release of lysosomal enzymes was confirmed a shared trait inside bivalves. Glycogen deposits as probable result of conversion of bacteria carbohydrates, have been detected, as well as the occurrence of both acidophilic and basophilic haemocytes. Phagocytosis, both in granulocytes and agranulocytes, has been recorded, together with the production of superoxide anion. Haemocytes were found positive to acid phosphatase, alkaline phosphatase, β-glucuronidase, chloroacetylesterase and arylsulphatase. Ctenidia showed a complex organization, including two demibranch to each ctenidium, two different kinds of lamellae filament and specialized structures as ciliated disks connecting filaments in “eutherorhabdic ctenidia”. The occurrence of three different types of mucous cells in the same region of ordinary filaments has been underlined. Such features, suggesting high resistance to environmental stress and disease, allow to consider spiny oysters as promising bioindicators, although deserving of further investigations to evaluate the physiological responses to stress in controlled conditions. Present data, moreover, providing basic information on the biology of S. gaederopus, notably implement the present knowledge on the Mediterranean spiny oysters, whose under-evaluated ecological role should be carefully considered.
File in questo prodotto:
File Dimensione Formato  
Fabrello et al.pdf

non disponibili

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 17.19 MB
Formato Adobe PDF
17.19 MB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3456383
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact