Orientational probability densities, Peq = exp(-u) (u, local potential), of bond-vectors in proteins provide information on structural flexibility. The related conformational entropy, Sk = -integral P-eq(ln P-eq)d omega - ln integral d omega, provides the entropic contribution to the free energy of the physical/biological process studied. We have developed a new method for deriving Peq and Sk from MD simulations, using the N-H bond as probe. Recently we used it to study the dimerization of the Rho GTPase binding domain of Plexin-B1 (RBD). Here we use it to study RBD binding to the small GTPase Rac1. In both cases 1 mu s MD simulations have been employed. The RBD has the ubiquitin fold with four mostly long loops. L3 is associated with GTPase binding, L4 with RBD dimerization, L2 participates in interdomain interactions, and L1 has not been associated with function. We find that RBD-Rac1 binding renders L1, L3, and L4 more rigid and the turns beta(2)/alpha(1) and alpha(2)/beta(5) more flexible. By comparison, RBD dimerization renders L4 more rigid, and the alpha-helices, the beta-strands, and L2 more flexible. The rigidity of L1 in RBDRAC is consistent with L1-L3 contacts seen in previous MD simulations. The analysis of the L3-loop reveals two states of distinct flexibility which we associate with involvement in slow conformational exchange processes differing in their rates. Overall, the N-H bonds make an unfavorable entropic contribution of (5.9 +/- 0.9) kJ/mol to the free energy of RBD-Rac1 binding; they were found to make a favorably contribution of (-7.0 +/- 0.7) kJ/mol to the free energy of RBD dimerization. In summary, the present study provides a new perspective on the impact of Rac1 binding and dimerization on the flexibility characteristics of the RBD. Further studies are stimulated by the results of this work.

Microsecond MD Simulations of the Plexin-B1 RBD: 2. N-H Probability Densities and Conformational Entropy in Ligand-Free, Rac1-Bound, and Dimer RBD

Zerbetto M.
Software
;
2022

Abstract

Orientational probability densities, Peq = exp(-u) (u, local potential), of bond-vectors in proteins provide information on structural flexibility. The related conformational entropy, Sk = -integral P-eq(ln P-eq)d omega - ln integral d omega, provides the entropic contribution to the free energy of the physical/biological process studied. We have developed a new method for deriving Peq and Sk from MD simulations, using the N-H bond as probe. Recently we used it to study the dimerization of the Rho GTPase binding domain of Plexin-B1 (RBD). Here we use it to study RBD binding to the small GTPase Rac1. In both cases 1 mu s MD simulations have been employed. The RBD has the ubiquitin fold with four mostly long loops. L3 is associated with GTPase binding, L4 with RBD dimerization, L2 participates in interdomain interactions, and L1 has not been associated with function. We find that RBD-Rac1 binding renders L1, L3, and L4 more rigid and the turns beta(2)/alpha(1) and alpha(2)/beta(5) more flexible. By comparison, RBD dimerization renders L4 more rigid, and the alpha-helices, the beta-strands, and L2 more flexible. The rigidity of L1 in RBDRAC is consistent with L1-L3 contacts seen in previous MD simulations. The analysis of the L3-loop reveals two states of distinct flexibility which we associate with involvement in slow conformational exchange processes differing in their rates. Overall, the N-H bonds make an unfavorable entropic contribution of (5.9 +/- 0.9) kJ/mol to the free energy of RBD-Rac1 binding; they were found to make a favorably contribution of (-7.0 +/- 0.7) kJ/mol to the free energy of RBD dimerization. In summary, the present study provides a new perspective on the impact of Rac1 binding and dimerization on the flexibility characteristics of the RBD. Further studies are stimulated by the results of this work.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3456556
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact