Mirrors are a subset of optical components essential for the success of current and future space missions. Most of the telescopes for space programs ranging from Earth Observation to Astrophysics and covering all the electromagnetic spectrum from X-rays to Far-Infrared are based on reflective optics. Mirrors operate in diverse and harsh environments that range from Low-Earth Orbit, to interplanetary orbits and the deep space. The operational life of space observatories spans from minutes (sounding rockets) to decades (large observatories), and the performance of the mirrors within the optical system is susceptible to degrade, which results in a transient optical efficiency of the instrument. The degradation that occurs in space environments depends on the operational life on the orbital properties of the space mission, and it reduces the total system throughput and hence compromises the science return. Therefore, the knowledge of potential degradation physical mechanisms, how they affect mirror performance, and how to prevent it, is of paramount importance to ensure the long-term success of space telescopes. In this brief review paper we report an overview on current mirror technology for space missions with a particular focus on the importance of degradation and radiation resistance of the coating materials.

Mirrors for space telescopes: Degradation issues

Corso A. J.;Pelizzo M. G.
2021

Abstract

Mirrors are a subset of optical components essential for the success of current and future space missions. Most of the telescopes for space programs ranging from Earth Observation to Astrophysics and covering all the electromagnetic spectrum from X-rays to Far-Infrared are based on reflective optics. Mirrors operate in diverse and harsh environments that range from Low-Earth Orbit, to interplanetary orbits and the deep space. The operational life of space observatories spans from minutes (sounding rockets) to decades (large observatories), and the performance of the mirrors within the optical system is susceptible to degrade, which results in a transient optical efficiency of the instrument. The degradation that occurs in space environments depends on the operational life on the orbital properties of the space mission, and it reduces the total system throughput and hence compromises the science return. Therefore, the knowledge of potential degradation physical mechanisms, how they affect mirror performance, and how to prevent it, is of paramount importance to ensure the long-term success of space telescopes. In this brief review paper we report an overview on current mirror technology for space missions with a particular focus on the importance of degradation and radiation resistance of the coating materials.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3456721
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 35
  • OpenAlex ND
social impact