Finding differentially expressed circular RNAs (circRNAs) is instrumental to understanding the molecular basis of phenotypic variation between conditions linked to circRNA-involving mechanisms. To date, several methods have been developed to identify circRNAs, and combining multiple tools is becoming an established approach to improve the detection rate and robustness of results in circRNA studies. However, when using a consensus strategy, it is unclear how circRNA expression estimates should be considered and integrated into downstream analysis, such as differential expression assessment. This work presents a novel solution to test circRNA differential expression using quantifications of multiple algorithms simultaneously. Our approach analyzes multiple tools' circRNA abundance count data within a single framework by leveraging generalized linear mixed models (GLMM), which account for the sample correlation structure within and between the quantification tools. We compared the GLMM approach with three widely used differential expression models, showing its higher sensitivity in detecting and efficiently ranking significant differentially expressed circRNAs. Our strategy is the first to consider combined estimates of multiple circRNA quantification methods, and we propose it as a powerful model to improve circRNA differential expression analysis.(c) 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Detecting differentially expressed circular RNAs from multiple quantification methods using a generalized linear mixed model

Buratin, Alessia;Romualdi, Chiara;Bortoluzzi, Stefania
;
Gaffo, Enrico
2022

Abstract

Finding differentially expressed circular RNAs (circRNAs) is instrumental to understanding the molecular basis of phenotypic variation between conditions linked to circRNA-involving mechanisms. To date, several methods have been developed to identify circRNAs, and combining multiple tools is becoming an established approach to improve the detection rate and robustness of results in circRNA studies. However, when using a consensus strategy, it is unclear how circRNA expression estimates should be considered and integrated into downstream analysis, such as differential expression assessment. This work presents a novel solution to test circRNA differential expression using quantifications of multiple algorithms simultaneously. Our approach analyzes multiple tools' circRNA abundance count data within a single framework by leveraging generalized linear mixed models (GLMM), which account for the sample correlation structure within and between the quantification tools. We compared the GLMM approach with three widely used differential expression models, showing its higher sensitivity in detecting and efficiently ranking significant differentially expressed circRNAs. Our strategy is the first to consider combined estimates of multiple circRNA quantification methods, and we propose it as a powerful model to improve circRNA differential expression analysis.(c) 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3456922
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact