Fetal heart rate (fHR) evaluation is fundamental to guarantee timely medical intervention in case of pregnancy complications. Due to the limitations of traditional cardiotocography, multichannel electrophysiological recording was proposed as a viable alternative, which requires Blind Source Separation (BSS) techniques. Yet effective and reliable separation of the fetal ECG remains challenging due to multiple noise sources and the effects of varying fetal position. In this work, we demonstrate that the adopted electrode configuration plays a key role in the effectiveness of BSS and propose guidelines for optimal electrode positioning. Moreover, a model is proposed to automatically predict the most suited configuration for accurate BSS-based fHR estimation with a minimal number of leads, to facilitate practical implementation.

Automatic optimization of multichannel electrode configurations for robust fetal heart rate detection by Blind Source Separation

Galli, A
;
2022

Abstract

Fetal heart rate (fHR) evaluation is fundamental to guarantee timely medical intervention in case of pregnancy complications. Due to the limitations of traditional cardiotocography, multichannel electrophysiological recording was proposed as a viable alternative, which requires Blind Source Separation (BSS) techniques. Yet effective and reliable separation of the fetal ECG remains challenging due to multiple noise sources and the effects of varying fetal position. In this work, we demonstrate that the adopted electrode configuration plays a key role in the effectiveness of BSS and propose guidelines for optimal electrode positioning. Moreover, a model is proposed to automatically predict the most suited configuration for accurate BSS-based fHR estimation with a minimal number of leads, to facilitate practical implementation.
File in questo prodotto:
File Dimensione Formato  
Automatic_Optimization_of_Multichannel_Electrode_Configurations_for_Robust_Fetal_Heart_Rate_Detection_by_Blind_Source_Separation.pdf

accesso aperto

Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 3.63 MB
Formato Adobe PDF
3.63 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3458319
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
  • OpenAlex ND
social impact