Theory-based scaling laws of the near and far scrape-off layer (SOL) widths are analytically derived for L-mode diverted tokamak discharges by using a two-fluid model. The near SOL pressure and density decay lengths are obtained by leveraging a balance among the power source, perpendicular turbulent transport across the separatrix, and parallel losses at the vessel wall, while the far SOL pressure and density decay lengths are derived by using a model of intermittent transport mediated by filaments. The analytical estimates of the pressure decay length in the near SOL is then compared to the results of three-dimensional, flux-driven, global, two-fluid turbulence simulations of L-mode diverted tokamak plasmas, and validated against experimental measurements taken from an experimental multi-machine database of divertor heat flux profiles, showing in both cases a very good agreement. Analogously, the theoretical scaling law for the pressure decay length in the far SOL is compared to simulation results and to experimental measurements in TCV L-mode discharges, pointing out the need of a large multi-machine database for the far SOL decay lengths.

Theory-based scaling laws of near and far scrape-off layer widths in single-null L-mode discharges

A. Stagni
Formal Analysis
;
2021

Abstract

Theory-based scaling laws of the near and far scrape-off layer (SOL) widths are analytically derived for L-mode diverted tokamak discharges by using a two-fluid model. The near SOL pressure and density decay lengths are obtained by leveraging a balance among the power source, perpendicular turbulent transport across the separatrix, and parallel losses at the vessel wall, while the far SOL pressure and density decay lengths are derived by using a model of intermittent transport mediated by filaments. The analytical estimates of the pressure decay length in the near SOL is then compared to the results of three-dimensional, flux-driven, global, two-fluid turbulence simulations of L-mode diverted tokamak plasmas, and validated against experimental measurements taken from an experimental multi-machine database of divertor heat flux profiles, showing in both cases a very good agreement. Analogously, the theoretical scaling law for the pressure decay length in the far SOL is compared to simulation results and to experimental measurements in TCV L-mode discharges, pointing out the need of a large multi-machine database for the far SOL decay lengths.
2021
File in questo prodotto:
File Dimensione Formato  
Giacomin_2021_Nucl._Fusion_61_076002.pdf

non disponibili

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 2.02 MB
Formato Adobe PDF
2.02 MB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3460670
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 20
social impact