The frequency-domain electromagnetic (FDEM) methods are a powerful tool for evaluating the impact caused on natural environments by anthropic facilities such as landfills. Noninvasive FDEM rapidly investigates large areas with no impact on the system. This is essential in case of capped landfills, as the impermeable liner represents a strong limitation for the use of all others direct and indirect investigation methods. This technique allows the propagation of the EM fields and collection of subsurface response below the liner thus representing the only effective solution both for static imaging and time-lapse monitoring of the processes that take place into the waste deposits. Traditionally, electromagnetic data are visualized as apparent electrical conductivity (ECa) maps that give practically no information about the variation of the conductivity with depth because ECa is only the equivalent conductivity of a homogeneous soil that would give the same measured response along depth. More recent approaches allow for an inversion of data thus providing clear information on the thickness of the investigated subsurface layers. The need for building a 3D electromagnetic model is crucial in the context of the urban waste landfill characterization, where leachate induces strong anomalies in electrical conductivity, which in turn causes a nonlinear model of the EMI response. A rigorous EMI inversion approach has been tested at a closed landfill in Southern Italy. The inverted model provided detailed information unattainable with other methods, by corroborating the assumption that electromagnetic measurements represent the best technique to characterize closed systems such as capped landfills.
Frequency domain electromagnetic induction imaging: An effective method to see inside a capped landfill
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Piero Deidda, Gian
;Cassiani, Giorgio
	
		
		
	
			2022
Abstract
The frequency-domain electromagnetic (FDEM) methods are a powerful tool for evaluating the impact caused on natural environments by anthropic facilities such as landfills. Noninvasive FDEM rapidly investigates large areas with no impact on the system. This is essential in case of capped landfills, as the impermeable liner represents a strong limitation for the use of all others direct and indirect investigation methods. This technique allows the propagation of the EM fields and collection of subsurface response below the liner thus representing the only effective solution both for static imaging and time-lapse monitoring of the processes that take place into the waste deposits. Traditionally, electromagnetic data are visualized as apparent electrical conductivity (ECa) maps that give practically no information about the variation of the conductivity with depth because ECa is only the equivalent conductivity of a homogeneous soil that would give the same measured response along depth. More recent approaches allow for an inversion of data thus providing clear information on the thickness of the investigated subsurface layers. The need for building a 3D electromagnetic model is crucial in the context of the urban waste landfill characterization, where leachate induces strong anomalies in electrical conductivity, which in turn causes a nonlinear model of the EMI response. A rigorous EMI inversion approach has been tested at a closed landfill in Southern Italy. The inverted model provided detailed information unattainable with other methods, by corroborating the assumption that electromagnetic measurements represent the best technique to characterize closed systems such as capped landfills.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											deidda 1-s2.0-S0956053X22001349-main.pdf
										
																				
									
										
											 Accesso riservato 
											Tipologia:
											Published (Publisher's Version of Record)
										 
									
									
									
									
										
											Licenza:
											
											
												Accesso privato - non pubblico
												
												
												
											
										 
									
									
										Dimensione
										18.14 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								18.14 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




