The gut microbiota represents a 'metabolic organ' that can regulate human metabolism. Intact gut microbiota contributes to host homeostasis, whereas compositional perturbations, termed dysbiosis, are associated with a wide range of diseases. Recent evidence demonstrates that dysbiosis, and the accompanying loss of microbiota-derived metabolites, results in a substantial alteration of skeletal muscle metabolism. As an example, bile acids, produced in the liver and further metabolized by intestinal microbiota, are of considerable interest since they regulate several host metabolic pathways by activating nuclear receptors, including the farnesoid X receptor (FXR). Indeed, alteration of gut microbiota may lead to skeletal muscle atrophy via a bile acid-FXR pathway. This Review aims to suggest a new pathway that connects different mechanisms, involving the gut-muscle axis, that are often seen as unrelated, and, starting from preclinical studies, we hypothesize new strategies aimed at optimizing skeletal muscle functionality.

Gut microbiota-bile acid-skeletal muscle axis

Mancin, Laura
;
Paoli, Antonio
2022

Abstract

The gut microbiota represents a 'metabolic organ' that can regulate human metabolism. Intact gut microbiota contributes to host homeostasis, whereas compositional perturbations, termed dysbiosis, are associated with a wide range of diseases. Recent evidence demonstrates that dysbiosis, and the accompanying loss of microbiota-derived metabolites, results in a substantial alteration of skeletal muscle metabolism. As an example, bile acids, produced in the liver and further metabolized by intestinal microbiota, are of considerable interest since they regulate several host metabolic pathways by activating nuclear receptors, including the farnesoid X receptor (FXR). Indeed, alteration of gut microbiota may lead to skeletal muscle atrophy via a bile acid-FXR pathway. This Review aims to suggest a new pathway that connects different mechanisms, involving the gut-muscle axis, that are often seen as unrelated, and, starting from preclinical studies, we hypothesize new strategies aimed at optimizing skeletal muscle functionality.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3461286
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact