We show the formation of macroscopic ATP-concentrations in an agarose gel and demonstrate that these gradients can be sustained in time at the expense of the consumption of a chemical fuel. The approach relies on the spatially controlled activation of ATP-producing and ATP-consuming reactions through the local injection of enzymes in the matrix. The reaction-diffusion system is maintained in a stationary non-equilibrium state as long as chemical fuel, phosphocreatine, is present. The reaction-diffusion system is coupled to a supramolecular system composed of monolayer protected gold nanoparticles and a fluorescent probe. As a result of this coupling, fluorescence signals emerge spontaneously in response to the ATP-concentration gradients. We show that the approach permits the rational formation of complex fluorescence patterns that change over time as a function of the evolution of the ATP-concentrations present in the system.

Persistent ATP-Concentration Gradients in a Hydrogel sustained by Chemical Fuel Consumption

Cao, Yingjuan;Gabrielli, Luca;Frezzato, Diego;Prins, Leonard J
2023

Abstract

We show the formation of macroscopic ATP-concentrations in an agarose gel and demonstrate that these gradients can be sustained in time at the expense of the consumption of a chemical fuel. The approach relies on the spatially controlled activation of ATP-producing and ATP-consuming reactions through the local injection of enzymes in the matrix. The reaction-diffusion system is maintained in a stationary non-equilibrium state as long as chemical fuel, phosphocreatine, is present. The reaction-diffusion system is coupled to a supramolecular system composed of monolayer protected gold nanoparticles and a fluorescent probe. As a result of this coupling, fluorescence signals emerge spontaneously in response to the ATP-concentration gradients. We show that the approach permits the rational formation of complex fluorescence patterns that change over time as a function of the evolution of the ATP-concentrations present in the system.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3462362
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 0
social impact