Objective An overabundance of bacteria in the chronic wound plays a significant role in the decreased ability for primary closure. One means of decreasing the bioburden in a wound is to operatively debride the wound for wound bed optimization prior to application of other therapy, such as Negative Pressure Wound Therapy (NPWT). We undertook a prospective pilot study to assess the efficacy of wound bed preparation for a standard algorithm (sharp surgical debridement followed by NPWT) versus one employing sharp surgical debridement followed by Negative Pressure Wound Therapy with Instillation (NPWTi). Methods Thirteen patients, corresponding to 16 chronic lower leg and foot wounds were taken to the operating room for debridement. The patients were sequentially enrolled in 2 treatment groups: the first receiving treatment with operative debridement followed by 1 week of NPWT with the instillation of quarter strength bleach solution; the other receiving a standard algorithm consisting of operative debridement and 1 week of NPWT. Quantitative cultures were taken pre-operatively after sterile preparation and draping of the wound site (POD # 0, pre-op), post-operatively once debridement was completed (POD # 0, post-op), and on post-operative day 7 after operative debridement (POD # 7, post-op). Results After operative debridement (post-operative day 0) there was a mean of 3 (±1) types of bacteria per wound. The mean CFU/gram tissue culture was statistically greater - 3.7 × 106 (±4 × 10 6) in the NPWTi group, while in the standard group (NPWT) the mean was 1.8 × 106 (±2.36 × 106) CFU/gram tissue culture (p = 0.016); at the end of therapy there was no statistical difference between the two groups (p = 0.44). Wounds treated with NPWTi had a mean of 2.6 × 105 (±3 × 105) CFU/gram of tissue culture while wounds treated with NPWT had a mean of 2.79 × 106 (±3.18 × 106) CFU/gram of tissue culture (p = 0.43). The mean absolute reduction in bacteria for the NPWTi group was 10.6 × 106 bacteria per gram of tissue while there was a mean absolute increase in bacteria for the NPWT group of 28.7 × 106 bacteria per gram of tissue, therefore there was a statistically significant reduction in the absolute bioburden in those wounds treated with NPWTi (p = 0.016). Conclusion It has long been realized that NPWT does not make its greatest impact by bioburden reduction. Other work has demonstrated that debridement alone does not reduce wound bioburden by more than 1 Log. Wounds treated with NPWTi (in this case with quarter strength bleach instillation solution) had a statistically significant reduction in bioburden, while wounds treated with NPWT had an increase in bioburden over the 7 days. © 2014 Elsevier Inc. All rights reserved.
Negative pressure wound therapy with instillation (NPWTi) better reduces post-debridement bioburden in chronically infected lower extremity wounds than NPWT alone
Facchin F.;
2014
Abstract
Objective An overabundance of bacteria in the chronic wound plays a significant role in the decreased ability for primary closure. One means of decreasing the bioburden in a wound is to operatively debride the wound for wound bed optimization prior to application of other therapy, such as Negative Pressure Wound Therapy (NPWT). We undertook a prospective pilot study to assess the efficacy of wound bed preparation for a standard algorithm (sharp surgical debridement followed by NPWT) versus one employing sharp surgical debridement followed by Negative Pressure Wound Therapy with Instillation (NPWTi). Methods Thirteen patients, corresponding to 16 chronic lower leg and foot wounds were taken to the operating room for debridement. The patients were sequentially enrolled in 2 treatment groups: the first receiving treatment with operative debridement followed by 1 week of NPWT with the instillation of quarter strength bleach solution; the other receiving a standard algorithm consisting of operative debridement and 1 week of NPWT. Quantitative cultures were taken pre-operatively after sterile preparation and draping of the wound site (POD # 0, pre-op), post-operatively once debridement was completed (POD # 0, post-op), and on post-operative day 7 after operative debridement (POD # 7, post-op). Results After operative debridement (post-operative day 0) there was a mean of 3 (±1) types of bacteria per wound. The mean CFU/gram tissue culture was statistically greater - 3.7 × 106 (±4 × 10 6) in the NPWTi group, while in the standard group (NPWT) the mean was 1.8 × 106 (±2.36 × 106) CFU/gram tissue culture (p = 0.016); at the end of therapy there was no statistical difference between the two groups (p = 0.44). Wounds treated with NPWTi had a mean of 2.6 × 105 (±3 × 105) CFU/gram of tissue culture while wounds treated with NPWT had a mean of 2.79 × 106 (±3.18 × 106) CFU/gram of tissue culture (p = 0.43). The mean absolute reduction in bacteria for the NPWTi group was 10.6 × 106 bacteria per gram of tissue while there was a mean absolute increase in bacteria for the NPWT group of 28.7 × 106 bacteria per gram of tissue, therefore there was a statistically significant reduction in the absolute bioburden in those wounds treated with NPWTi (p = 0.016). Conclusion It has long been realized that NPWT does not make its greatest impact by bioburden reduction. Other work has demonstrated that debridement alone does not reduce wound bioburden by more than 1 Log. Wounds treated with NPWTi (in this case with quarter strength bleach instillation solution) had a statistically significant reduction in bioburden, while wounds treated with NPWT had an increase in bioburden over the 7 days. © 2014 Elsevier Inc. All rights reserved.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.