Purpose To assess the intra-rater reliability of static wide field of view ultrasound to quantify the architectural characteristics of the hamstring muscles. Methods Twenty amateur male athletes were recruited. Their left hamstring muscles were assessed using static wide field of view ultrasound on two separate occasions. Static ultrasound images were acquired by a single sonographer using a 92mm linear transducer. The architectural characteristics (muscle length, fascicle length, pennation angle and muscle thickness) from two distinct locations of the bicep femoris long head and semimembranosus were evaluated. Muscle length and thickness of the bicep femoris short head and semitendinosus muscle were also evaluated. Intraclass correlation coefficient analyses were performed to determine the intra-rater reliability of the performed measurements. Results Both muscle (intraclass correlation coefficient = 0.99; standard error of measurement = 4.3 to 6.6mm) and fascicle (intraclass correlation coefficient = 0.92 to 0.98; standard error measurement = 1.1 to 2.4mm) length were measured with excellent intra-rater reliability. Muscle thickness was measured with excellent reliability (intraclass correlation coefficient = 0.9 to 0.96; standard error of measurement = 0.91mm to 1.4mm) for all hamstring muscles except for the proximal segments of the bicep femoris short head (intraclass correlation coefficient = 0.85; standard error of measurement = 0.84mm) and semitendinosus (intraclass correlation coefficient = 0.88; standard error of measurement = 0.82mm), which were measured with good reliability. Pennation angle was measured with good reliability (intraclass correlation coefficient = 0.77 to 0.87; standard error of measurement = 1 to 1.6°). Conclusion The architectural characteristics of the hamstring muscles of male amateur athletes can be reliably quantified using static wide field of view ultrasound.

Hamstring muscle architecture assessed sonographically using wide field of view: a reliability study

De Vito G;
2022

Abstract

Purpose To assess the intra-rater reliability of static wide field of view ultrasound to quantify the architectural characteristics of the hamstring muscles. Methods Twenty amateur male athletes were recruited. Their left hamstring muscles were assessed using static wide field of view ultrasound on two separate occasions. Static ultrasound images were acquired by a single sonographer using a 92mm linear transducer. The architectural characteristics (muscle length, fascicle length, pennation angle and muscle thickness) from two distinct locations of the bicep femoris long head and semimembranosus were evaluated. Muscle length and thickness of the bicep femoris short head and semitendinosus muscle were also evaluated. Intraclass correlation coefficient analyses were performed to determine the intra-rater reliability of the performed measurements. Results Both muscle (intraclass correlation coefficient = 0.99; standard error of measurement = 4.3 to 6.6mm) and fascicle (intraclass correlation coefficient = 0.92 to 0.98; standard error measurement = 1.1 to 2.4mm) length were measured with excellent intra-rater reliability. Muscle thickness was measured with excellent reliability (intraclass correlation coefficient = 0.9 to 0.96; standard error of measurement = 0.91mm to 1.4mm) for all hamstring muscles except for the proximal segments of the bicep femoris short head (intraclass correlation coefficient = 0.85; standard error of measurement = 0.84mm) and semitendinosus (intraclass correlation coefficient = 0.88; standard error of measurement = 0.82mm), which were measured with good reliability. Pennation angle was measured with good reliability (intraclass correlation coefficient = 0.77 to 0.87; standard error of measurement = 1 to 1.6°). Conclusion The architectural characteristics of the hamstring muscles of male amateur athletes can be reliably quantified using static wide field of view ultrasound.
2022
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3463923
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact