Compactifications of the physical superstring to two dimensions provide a general template for realizing 2D conformal field theories coupled to worldsheet gravity, i.e. non-critical string theories. Motivated by this observation, in this paper we determine the quasi-topological 8D theory which governs the vacua of 2D N$$ \mathcal{N} $$= (0, 2) gauged linear sigma models (GLSMs) obtained from compactifications of type I and heterotic strings on a Calabi-Yau fourfold. We also determine the quasi-topological 6D theory governing the 2D vacua of intersecting 7-branes in compactifications of F-theory on an elliptically fibered Calabi-Yau fivefold, where matter fields and interaction terms localize on lower-dimensional subspaces, i.e. defect operators. To cancel anomalies / cancel tadpoles, these GLSMs must couple to additional chiral sectors, which in some cases do not admit a known description in terms of a UV GLSM. Additionally, we find that constructing an anomaly free spectrum can sometimes break supersymmetry due to spacetime filling anti-branes. We also study various canonical examples such as the standard embedding of heterotic strings on a Calabi-Yau fourfold and F-theoretic “rigid clusters” with no local deformation moduli of the elliptic fibration.
UV completions for non-critical strings
Apruzzi F;
2016
Abstract
Compactifications of the physical superstring to two dimensions provide a general template for realizing 2D conformal field theories coupled to worldsheet gravity, i.e. non-critical string theories. Motivated by this observation, in this paper we determine the quasi-topological 8D theory which governs the vacua of 2D N$$ \mathcal{N} $$= (0, 2) gauged linear sigma models (GLSMs) obtained from compactifications of type I and heterotic strings on a Calabi-Yau fourfold. We also determine the quasi-topological 6D theory governing the 2D vacua of intersecting 7-branes in compactifications of F-theory on an elliptically fibered Calabi-Yau fivefold, where matter fields and interaction terms localize on lower-dimensional subspaces, i.e. defect operators. To cancel anomalies / cancel tadpoles, these GLSMs must couple to additional chiral sectors, which in some cases do not admit a known description in terms of a UV GLSM. Additionally, we find that constructing an anomaly free spectrum can sometimes break supersymmetry due to spacetime filling anti-branes. We also study various canonical examples such as the standard embedding of heterotic strings on a Calabi-Yau fourfold and F-theoretic “rigid clusters” with no local deformation moduli of the elliptic fibration.| File | Dimensione | Formato | |
|---|---|---|---|
|
JHEP07(2016)045.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
1.08 MB
Formato
Adobe PDF
|
1.08 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




