Objectives: The present study aimed to develop and cross-validate a futsal-specific bioelectrical equation for estimating fat-free mass (FFM) in male players. Methods: A total of 66 futsal players (age 23.3 ± 5.4 years) from the Major Portuguese Futsal League "LIGA PLACARD" and from the 2nd and 3rd National Futsal Leagues were included in this cross-sectional, observational study. The participants underwent a foot-to-hand bioelectrical impedance analysis (BIA) at 50 kHz and completed a dual-energy X-ray absorptiometry (DXA) scan for reference body composition data. The sport-specific model was developed by stepwise multiple regression using bioelectrical raw parameters [resistance (R) and reactance (Xc)] as independent variables. Validation was performed using the PRESS approach, least squares regression, concordance correlation coefficient (CCC) and Bland-Altman analyses. Results: A BIA-based model was developed for FFM [FFM (kg) = -8.865 + 0.437 * Body Mass (kg) + 0.186 * Xc + 0.415 * stature (cm)2/R (R2 = 0.89, standard error of estimation = 2.38 kg)]. Results showed a substantial strength of agreement (CCC = 0.953), an r2 of 0.88 with a standard error of estimation equal to 2.31 kg, no mean bias (0.04 kg, p>0.05), low limits of agreement (ranged from -4.5 to 4.6 kg), and no trend (r = -0.170, p = 0.172). Conclusions: The present equation is the first to allow for a valid, accurate, and sport-specific assessment of FFM in male futsal players.

Fat-free mass estimation in male elite futsal players: Development and validation of a new bioelectrical impedance–based predictive equation

Campa F.
;
Paoli A.
Supervision
;
2023

Abstract

Objectives: The present study aimed to develop and cross-validate a futsal-specific bioelectrical equation for estimating fat-free mass (FFM) in male players. Methods: A total of 66 futsal players (age 23.3 ± 5.4 years) from the Major Portuguese Futsal League "LIGA PLACARD" and from the 2nd and 3rd National Futsal Leagues were included in this cross-sectional, observational study. The participants underwent a foot-to-hand bioelectrical impedance analysis (BIA) at 50 kHz and completed a dual-energy X-ray absorptiometry (DXA) scan for reference body composition data. The sport-specific model was developed by stepwise multiple regression using bioelectrical raw parameters [resistance (R) and reactance (Xc)] as independent variables. Validation was performed using the PRESS approach, least squares regression, concordance correlation coefficient (CCC) and Bland-Altman analyses. Results: A BIA-based model was developed for FFM [FFM (kg) = -8.865 + 0.437 * Body Mass (kg) + 0.186 * Xc + 0.415 * stature (cm)2/R (R2 = 0.89, standard error of estimation = 2.38 kg)]. Results showed a substantial strength of agreement (CCC = 0.953), an r2 of 0.88 with a standard error of estimation equal to 2.31 kg, no mean bias (0.04 kg, p>0.05), low limits of agreement (ranged from -4.5 to 4.6 kg), and no trend (r = -0.170, p = 0.172). Conclusions: The present equation is the first to allow for a valid, accurate, and sport-specific assessment of FFM in male futsal players.
2023
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3464961
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact