Ex situ heart perfusion (ESHP) has proven to be an important and valuable step toward better preservation of donor hearts for heart transplantation. Currently, few ESHP systems allow for a convenient functional and physiological evaluation of the heart. We sought to establish a simple system that provides functional and physiological assessment of the heart during ESHP. The ESHP circuit consists of an oxygenator, a heart-lung machine, a heater-cooler unit, an anesthesia gas blender, and a collection funnel. Female Yorkshire pig hearts (n = 10) had del Nido cardioplegia (4 C) administered, excised, and attached to the perfusion system. Hearts were perfused retrogradely into the aortic root for 2 hours before converting the system to an isovolumic mode or a working mode for further 2 hours. Blood samples were analyzed to measure metabolic parameters. During the isovolumic mode (n = 5), a balloon inserted in the left ventricular (LV) cavity was inflated so that an end-diastolic pressure o...

A Multi-Mode System for Myocardial Functional and Physiological Assessment during Ex Situ Heart Perfusion

Guariento, Alvise;
2020

Abstract

Ex situ heart perfusion (ESHP) has proven to be an important and valuable step toward better preservation of donor hearts for heart transplantation. Currently, few ESHP systems allow for a convenient functional and physiological evaluation of the heart. We sought to establish a simple system that provides functional and physiological assessment of the heart during ESHP. The ESHP circuit consists of an oxygenator, a heart-lung machine, a heater-cooler unit, an anesthesia gas blender, and a collection funnel. Female Yorkshire pig hearts (n = 10) had del Nido cardioplegia (4 C) administered, excised, and attached to the perfusion system. Hearts were perfused retrogradely into the aortic root for 2 hours before converting the system to an isovolumic mode or a working mode for further 2 hours. Blood samples were analyzed to measure metabolic parameters. During the isovolumic mode (n = 5), a balloon inserted in the left ventricular (LV) cavity was inflated so that an end-diastolic pressure o...
File in questo prodotto:
File Dimensione Formato  
Duignan et al. - 2020 - A Multi-Mode System for Myocardial Functional and Physiological Assessment during Ex Situ Heart Perfusion-annotated.pdf

non disponibili

Tipologia: Published (publisher's version)
Licenza: Accesso privato - non pubblico
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3465127
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact