The formation of droplets of bio-molecular condensates through liquid-liquid phase separation (LLPS) of their component proteins is a key factor in the maintenance of cellular homeostasis. Different protein properties were shown to be important in LLPS onset, making it possible to develop predictors, which try to discriminate a positive set of proteins involved in LLPS against a negative set of proteins not involved in LLPS. On the other hand, the redundancy and multivalency of the interactions driving LLPS led to the suggestion that the large conformational entropy associated with non specific side-chain interactions is also a key factor in LLPS. In this work we build a LLPS predictor which combines the ability to form pi-pi interactions, with an unrelated feature, the propensity to stabilize the beta-pairing interaction mode. The cross-beta structure is formed in the amyloid aggregates, which are involved in degenerative diseases and may be the final thermodynamically stable state of protein condensates. Our results show that the combination of pi-pi and beta-pairing propensity yields an improved performance. They also suggest that protein sequences are more likely to be involved in phase separation if the main chain conformational entropy of the beta-pairing maintained droplet state is increased. This would stabilize the droplet state against the more ordered amyloid state. Interestingly, the entropic stabilization of the droplet state appears to proceed according to different mechanisms, depending on the fraction of "droplet-driving " proteins present in the positive set.

Sequence-Based Prediction of Protein Phase Separation: The Role of Beta-Pairing Propensity

Mullick P.;Trovato A.
2022

Abstract

The formation of droplets of bio-molecular condensates through liquid-liquid phase separation (LLPS) of their component proteins is a key factor in the maintenance of cellular homeostasis. Different protein properties were shown to be important in LLPS onset, making it possible to develop predictors, which try to discriminate a positive set of proteins involved in LLPS against a negative set of proteins not involved in LLPS. On the other hand, the redundancy and multivalency of the interactions driving LLPS led to the suggestion that the large conformational entropy associated with non specific side-chain interactions is also a key factor in LLPS. In this work we build a LLPS predictor which combines the ability to form pi-pi interactions, with an unrelated feature, the propensity to stabilize the beta-pairing interaction mode. The cross-beta structure is formed in the amyloid aggregates, which are involved in degenerative diseases and may be the final thermodynamically stable state of protein condensates. Our results show that the combination of pi-pi and beta-pairing propensity yields an improved performance. They also suggest that protein sequences are more likely to be involved in phase separation if the main chain conformational entropy of the beta-pairing maintained droplet state is increased. This would stabilize the droplet state against the more ordered amyloid state. Interestingly, the entropic stabilization of the droplet state appears to proceed according to different mechanisms, depending on the fraction of "droplet-driving " proteins present in the positive set.
2022
File in questo prodotto:
File Dimensione Formato  
Biomol22.pdf

accesso aperto

Descrizione: Main text
Tipologia: Published (publisher's version)
Licenza: Creative commons
Dimensione 1.06 MB
Formato Adobe PDF
1.06 MB Adobe PDF Visualizza/Apri
Biomol22_supp.zip

accesso aperto

Descrizione: Supplementary Material
Tipologia: Altro materiale allegato
Licenza: Creative commons
Dimensione 1.75 MB
Formato Zip File
1.75 MB Zip File Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3465128
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact