Planetary engulfment events involve the chemical assimilation of a planet into a star’s external layer. This can cause a change in the chemical pattern of the stellar atmosphere in a way that mirrors the composition of the rocky object engulfed, with the refractory elements being more abundant than the volatiles. Due to these stellar chemical changes, planetary engulfment events can render the process of chemical tagging potentially inaccurate. A line-byline differential analysis of twin stars in wide binary systems allows us to test the chemical homogeneity of these associations with typical individual stellar Fe I uncertainties of 0.01 dex and eventually unveil chemical anomalies that could be attributed to planetary engulfment events. Out of the 14 systems analyzed here, we report the discovery of the most chemically inhomogeneous system to date (HIP 34407/HIP 34426). The median difference in abundances of refractory elements within the pair is 0.19 dex and the trend between the differential abundances and condensation temperature suggests that the anomaly is likely due to a planetary engulfment event. Within our sample, five other chemically anomalous systems are found.

The chemical signatures of planetary engulfment events in binary systems

Spina L.;
2020

Abstract

Planetary engulfment events involve the chemical assimilation of a planet into a star’s external layer. This can cause a change in the chemical pattern of the stellar atmosphere in a way that mirrors the composition of the rocky object engulfed, with the refractory elements being more abundant than the volatiles. Due to these stellar chemical changes, planetary engulfment events can render the process of chemical tagging potentially inaccurate. A line-byline differential analysis of twin stars in wide binary systems allows us to test the chemical homogeneity of these associations with typical individual stellar Fe I uncertainties of 0.01 dex and eventually unveil chemical anomalies that could be attributed to planetary engulfment events. Out of the 14 systems analyzed here, we report the discovery of the most chemically inhomogeneous system to date (HIP 34407/HIP 34426). The median difference in abundances of refractory elements within the pair is 0.19 dex and the trend between the differential abundances and condensation temperature suggests that the anomaly is likely due to a planetary engulfment event. Within our sample, five other chemically anomalous systems are found.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3466909
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 20
social impact