The neurotoxicity of inhaled ZnO nanoparticles (NPs) and the underlying mechanisms remain largely unknown. In this study, ZnO NPs (30 +/- 6 nm) were intranasally instilled to rats via a single dose (13 mg Zn/kg BW), with ZnSO4 as the ionic control, and analysis 7-days post exposure. The hippocampus was found to be the main target for Zn accumulation for both ZnO NPs and ZnSO4. Synchrotron radiation based X-ray absorption fine structure (XAFS) analysis showed that no particulate ZnO was found, suggesting the occurrence of dissolution and transformation of ZnO NPs. Multi-omics analysis, including transcriptomics, proteomics and metabolomics, demonstrated that cholinergic neurotransmission was the main biological process affected following both treatments. The release of the key neurotransmitter acetylcholine (ACh) was increased by enhanced ACh synthesis, upregulation of vesicular ACh transporter, and suppression of the activity of ACh hydrolysis enzyme (AChE), either by direct Zn-AChE interaction or a transcriptional down-regulation mechanism. In addition, ZnO NPs and ZnSO4 induced similar molecular consequences and exhibited the same Zn chemical speciation (100 % of Zn complexes) in the hippocampal region evidenced by XAFS analysis, suggesting that the observed biological effects were mainly derived from Zn2+ released from the ZnO NPs. This study not only evidences a new pathway for the impact of ZnO NPs on the brain, but also identifies the origin of the impact as ionic Zn, which provides the basis for safe-by-design of ZnO NPs. (C) 2020 The Author(s). Published by Elsevier Ltd.

Intranasal exposure to ZnO nanoparticles induces alterations in cholinergic neurotransmission in rat brain

Fazel Abdolahpur Monikh;
2020

Abstract

The neurotoxicity of inhaled ZnO nanoparticles (NPs) and the underlying mechanisms remain largely unknown. In this study, ZnO NPs (30 +/- 6 nm) were intranasally instilled to rats via a single dose (13 mg Zn/kg BW), with ZnSO4 as the ionic control, and analysis 7-days post exposure. The hippocampus was found to be the main target for Zn accumulation for both ZnO NPs and ZnSO4. Synchrotron radiation based X-ray absorption fine structure (XAFS) analysis showed that no particulate ZnO was found, suggesting the occurrence of dissolution and transformation of ZnO NPs. Multi-omics analysis, including transcriptomics, proteomics and metabolomics, demonstrated that cholinergic neurotransmission was the main biological process affected following both treatments. The release of the key neurotransmitter acetylcholine (ACh) was increased by enhanced ACh synthesis, upregulation of vesicular ACh transporter, and suppression of the activity of ACh hydrolysis enzyme (AChE), either by direct Zn-AChE interaction or a transcriptional down-regulation mechanism. In addition, ZnO NPs and ZnSO4 induced similar molecular consequences and exhibited the same Zn chemical speciation (100 % of Zn complexes) in the hippocampal region evidenced by XAFS analysis, suggesting that the observed biological effects were mainly derived from Zn2+ released from the ZnO NPs. This study not only evidences a new pathway for the impact of ZnO NPs on the brain, but also identifies the origin of the impact as ionic Zn, which provides the basis for safe-by-design of ZnO NPs. (C) 2020 The Author(s). Published by Elsevier Ltd.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11577/3467429
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 22
social impact