Regardless of its success, the constant relaxation time approximation has limited validity. Temperature and energy dependent effects are important to match experimental trends even in simple situations. We present the implementation of relaxation time approximation models in the calculation of Boltzmann transport in PAOFLOW 2.0 and apply those to model band-structures. In addition, using a self-consistent fitting of the model parameters to experimental conductivity data, we provide a flexible tool to extract scattering rates with high accuracy. We illustrate the approximations using simple models and then apply the method to GaAs, Si, Mg 3Sb 2, and CoSb 3.
Relaxation time approximations in PAOFLOW 2.0
Ilaria Siloi;
2022
Abstract
Regardless of its success, the constant relaxation time approximation has limited validity. Temperature and energy dependent effects are important to match experimental trends even in simple situations. We present the implementation of relaxation time approximation models in the calculation of Boltzmann transport in PAOFLOW 2.0 and apply those to model band-structures. In addition, using a self-consistent fitting of the model parameters to experimental conductivity data, we provide a flexible tool to extract scattering rates with high accuracy. We illustrate the approximations using simple models and then apply the method to GaAs, Si, Mg 3Sb 2, and CoSb 3.| File | Dimensione | Formato | |
|---|---|---|---|
|
s41598-022-08931-5.pdf
accesso aperto
Tipologia:
Published (Publisher's Version of Record)
Licenza:
Creative commons
Dimensione
3.61 MB
Formato
Adobe PDF
|
3.61 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.




